Towards petascale simulation of atmospheric circulations with soundproof equations

This paper highlights progress with the development of a petascale implementation of general-purpose high-resolution (nonoscillatory) hydrodynamical simulation code EULAG [Prusa et al. 2008, Comput. Fluids37, 1193]. The applications addressed are anelastic atmospheric flows in the range of scales from micro to planetary. The new modeldomain decomposition into a three dimensional processor array has been implemented to increase model performance and scalability. The performance of the new code is demonstrated on the IBM BlueGene/L and Cray XT4/XT5 supercomputers. The results show significant improvement of the model efficacy compared to the original decomposition into a two-dimensional processor array in the horizontal — a standard in meteorological models.

[1]  Piotr K. Smolarkiewicz,et al.  Numerical Simulation of CloudClear Air Interfacial Mixing , 2004 .

[2]  Piotr K. Smolarkiewicz,et al.  Spectral Preconditioners for Nonhydrostatic Atmospheric Models , 2003 .

[3]  J. Prusa,et al.  Simulations of gravity wave induced turbulence using 512 PE Cray T3E , 2001 .

[4]  P. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .

[5]  Piotr K. Smolarkiewicz,et al.  Numerical Simulation of Cloud–Clear Air Interfacial Mixing: Effects on Cloud Microphysics , 2006 .

[6]  J. Szmelter,et al.  A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves , 2011 .

[7]  Alex Povitsky,et al.  Parallelization of Pipelined Algorithms for Sets of Linear Banded Systems , 1999, J. Parallel Distributed Comput..

[8]  Christer Fureby,et al.  Simulation of transition and turbulence decay in the Taylor–Green vortex , 2007 .

[9]  Marcin Grzesiak,et al.  Solar terminator-related ionosphere derived from GPS TEC measurements: A case study , 2011, Acta Geophysica.

[10]  P. K. Smolarkiewicz,et al.  VARIATIONAL METHODS FOR ELLIPTIC PROBLEMS IN FLUID MODELS , 2000 .

[11]  Piotr K. Smolarkiewicz,et al.  Predicting weather, climate and extreme events , 2008, J. Comput. Phys..

[12]  Piotr K. Smolarkiewicz,et al.  Multidimensional positive definite advection transport algorithm: an overview , 2006 .

[13]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[14]  Paul Charbonneau,et al.  MAGNETIC CYCLES IN GLOBAL LARGE-EDDY SIMULATIONS OF SOLAR CONVECTION , 2010 .

[15]  J. Prusa,et al.  An all-scale anelastic model for geophysical flows: dynamic grid deformation , 2003 .

[16]  Harold S. Stone,et al.  An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of Equations , 1973, JACM.

[17]  P. Smolarkiewicz,et al.  A multiscale anelastic model for meteorological research , 2002 .

[18]  L. Margolin,et al.  A Class of Nonhydrostatic Global Models. , 2001 .

[19]  Joanna Szmelter,et al.  Iterated upwind schemes for gas dynamics , 2009, J. Comput. Phys..

[20]  Piotr K. Smolarkiewicz,et al.  Spectral Preconditioners for nonhydrostatic atmospheric models: extreme applications [presentation] , 2004 .

[21]  Piotr K. Smolarkiewicz,et al.  A viscoelastic fluid model for brain injuries , 2002 .

[22]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[23]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[24]  P. Smolarkiewicz,et al.  Effective eddy viscosities in implicit large eddy simulations of turbulent flows , 2003 .

[25]  ARCHITECTURE COMPUTERS , 2022 .

[26]  M. Suárez,et al.  A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models , 1994 .

[27]  Piotr K. Smolarkiewicz,et al.  Pores resolving simulation of Darcy flows , 2010, J. Comput. Phys..

[28]  Chung-Lin Shie,et al.  Parallelization of the NASA Goddard Cumulus Ensemble Model for Massively Parallel Computing , 2007 .

[29]  Ming Xue,et al.  Distributed Processing of a Regional Prediction Model , 1994 .