Quantum codes from cyclic codes over a class of nonchain rings
暂无分享,去创建一个
[1] Santosh Kumar,et al. Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.
[2] Jianfa Qian. Quantum Codes from Cyclic Codes over $F_2+vF_2$ , 2013 .
[3] Wenping Ma,et al. Gray Map and Quantum Codes over the Ring F_2+uF_2+u^2F_2 , 2011, 2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications.
[4] M. Özen,et al. Quantum codes from codes over Gaussian integers with respect to the Mannheim metric , 2010 .
[5] Pradeep Kiran Sarvepalli,et al. Primitive Quantum BCH Codes over Finite Fields , 2006, 2006 IEEE International Symposium on Information Theory.
[6] T. Aaron Gulliver,et al. Quantum codes over rings , 2014 .
[7] Steane,et al. Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[8] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[9] Fuzheng Gao,et al. A modified weak Galerkin finite element method for a class of parabolic problems , 2014, J. Comput. Appl. Math..
[10] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[11] I. Siap,et al. Cyclic and constacyclic codes over a non-chain ring , 2014 .
[12] Yasemin Cengellenmis,et al. On Quantum Codes Obtained From Cyclic Codes Over F_2+vF_2+v^2F_2 , 2014, ArXiv.
[13] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[14] Mohammad Ashraf,et al. Quantum codes from cyclic codes over F3 + vF3 , 2014 .
[15] Alexei E. Ashikhmin,et al. Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.
[16] Andrew M. Steane. Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.
[17] V. Tonchev. The existence of optimal quaternary [28,20,6] and quantum [[28,12,6]] codes , 2014 .
[18] Chung-Chin Lu,et al. A Construction of Quantum Stabilizer Codes Based on Syndrome Assignment by Classical Parity-Check Matrices , 2007, IEEE Transactions on Information Theory.