Accumulation patterns of intracellular salts in a new halophilic amoeboflagellate, Euplaesiobystra salpumilio sp. nov., (Heterolobosea; Discoba) under hypersaline conditions

Halophilic microbial eukaryotes are present in many eukaryotic lineages and major groups; however, our knowledge of their diversity is still limited. Furthermore, almost nothing is known about the intracellular accumulation of salts in most halophilic eukaryotes. Here, we isolate a novel halophilic microbial eukaryote from hypersaline water of 134 practical salinity units (PSU) in a solar saltern. This species is an amoeboflagellate (capable of the amoeba-flagellate-cyst transformation) in the heterolobosean group and belongs to the genus Euplaesiobystra based on morphological data and 18S rDNA sequences. However, the isolate is distinct from any of the described Euplaesiobystra species. Especially, it is the smallest Euplaesiobystra to date, has a distinct cytostome, and grows optimally at 75–100 PSU. Furthermore, the phylogenetic tree of the 18S rDNA sequences demonstrates that the isolate forms a strongly supported group, sister to Euplaesiobystra hypersalinica. Thus, we propose that the isolate, Euplaesiobystra salpumilio, is a novel species. E. salpumilio displays a significantly increased influx of the intracellular Na+ and K+ at 50, 100, and 150 PSU, compared to freshwater species. However, the intracellular retention of the Na+ and K+ at 150 PSU does not significantly differ from 100 PSU, suggesting that E. salpumilio can extrude the Na+ and K+ from cells under high-salinity conditions. Interestingly, actively growing E. salpumilio at 100 and 150 PSU may require more intracellular accumulation of Na+ than the no-growth but-viable state at 50 PSU. It seems that our isolate displays two salt metabolisms depending on the tested salinities. E. salpumilio shows a salt-in strategy for Na+ at lower salinity of 100 PSU, while it displays a salt-out strategy for Na+ at higher salinity of 150 PSU. Our results suggest that the novel halophilic E. salpumilio fundamentally uses a salt-out strategy at higher salinities, and the accumulation patterns of intracellular salts in this species are different from those in other halophilic microbial eukaryotes.

[1]  Jong Soo Park,et al.  Transcriptomic analysis of brine shrimp Artemia franciscana across a wide range of salinities. , 2021, Marine genomics.

[2]  Jong Soo Park,et al.  The Diversity Patterns of Rare to Abundant Microbial Eukaryotes Across a Broad Range of Salinities in a Solar Saltern , 2021, Microbial ecology.

[3]  F. Nitsche,et al.  Diversity and phylogeny of percolomonads based on newly discovered species from hypersaline and marine waters. , 2021, European journal of protistology.

[4]  C. Leboulanger,et al.  Morphology and Ecology of Two New Amoebae, Isolated From a Thalassohaline Lake, Dziani Dzaha. , 2020, Protist.

[5]  A. Simpson,et al.  Ecological and evolutionary patterns in the enigmatic protist genus Percolomonas (Heterolobosea; Discoba) from diverse habitats , 2019, bioRxiv.

[6]  Jong Soo Park,et al.  A New Halophilic Heterolobosean Flagellate, Aurem hypersalina gen. n. et sp. n., Closely Related to the Pleurostomum‐Tulamoeba Clade: Implications for Adaptive Radiation of Halophilic Eukaryotes , 2018, The Journal of eukaryotic microbiology.

[7]  A. Simpson,et al.  Recent Advances in Halophilic Protozoa Research , 2018, The Journal of eukaryotic microbiology.

[8]  N. Gunde-Cimerman,et al.  Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. , 2018, FEMS microbiology reviews.

[9]  S. Filker,et al.  Identification of osmoadaptive strategies in the halophile, heterotrophic ciliate Schmidingerothrix salinarum , 2018, PLoS biology.

[10]  Jong Soo Park A New Heterolobosean Amoeboflagellate, Tetramitus dokdoensis n. sp., Isolated from a Freshwater Pond on Dokdo Island in the East Sea, Korea , 2017, The Journal of eukaryotic microbiology.

[11]  Rashid Al-Yahyai,et al.  The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes , 2017, Front. Physiol..

[12]  Matthew W. Brown,et al.  Osmoadaptative Strategy and Its Molecular Signature in Obligately Halophilic Heterotrophic Protists , 2016, Genome biology and evolution.

[13]  A. Simpson,et al.  Diversity of Heterotrophic Protists from Extremely Hypersaline Habitats. , 2015, Protist.

[14]  A. Simpson,et al.  Characterization of Tulamoeba bucina n. sp., an Extremely Halotolerant Amoeboflagellate Heterolobosean Belonging to the Tulamoeba–Pleurostomum Clade (Tulamoebidae n. fam.) , 2015, The Journal of eukaryotic microbiology.

[15]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[16]  A. Stamatakis,et al.  The Phylogenetic Likelihood Library , 2014, Systematic biology.

[17]  A. Simpson,et al.  Creneis carolina gen. et sp. nov. (Heterolobosea), a novel marine anaerobic protist with strikingly derived morphology and life cycle. , 2014, Protist.

[18]  T. Stoeck,et al.  Morphology, ontogenesis and molecular phylogeny of Platynematum salinarum nov. spec., a new scuticociliate (Ciliophora, Scuticociliatia) from a solar saltern. , 2014, European journal of protistology.

[19]  C. Gostinčar,et al.  Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective , 2014, Front. Microbiol..

[20]  N. Gunde-Cimerman,et al.  Osmoadaptation Strategy of the Most Halophilic Fungus, Wallemia ichthyophaga, Growing Optimally at Salinities above 15% NaCl , 2013, Applied and Environmental Microbiology.

[21]  J. Barta,et al.  Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification. , 2013, International journal for parasitology.

[22]  Matthew W. Brown,et al.  Amoeba stages in the deepest branching heteroloboseans, including Pharyngomonas: evolutionary and systematic implications. , 2013, Protist.

[23]  Minh Anh Nguyen,et al.  Ultrafast Approximation for Phylogenetic Bootstrap , 2013, Molecular biology and evolution.

[24]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[25]  A. Simpson,et al.  Characterization of Selenaion koniopes n. gen., n. sp., an Amoeba that Represents a New Major Lineage within Heterolobosea, Isolated from the Wieliczka Salt Mine , 2012, The Journal of eukaryotic microbiology.

[26]  B. Leander,et al.  Diversity, evolution and molecular systematics of the Psalteriomonadidae, the main lineage of anaerobic/microaerophilic heteroloboseans (excavata: discoba). , 2012, Protist.

[27]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[28]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[29]  A. Simpson,et al.  Characterization of Pharyngomonas kirbyi (= "Macropharyngomonas halophila" nomen nudum), a very deep-branching, obligately halophilic heterolobosean flagellate. , 2011, Protist.

[30]  M. Kawasaki,et al.  Isolation of a new heterolobosean amoeba from a rice field soil: Vrihiamoeba italica gen. nov., sp. nov. , 2010, European journal of protistology.

[31]  A. Simpson,et al.  Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles. , 2010, Environmental microbiology.

[32]  Susan J. Brown,et al.  Ultrastructure and molecular phylogeny of two heterolobosean amoebae, Euplaesiobystra hypersalinica gen. et sp. nov. and Tulamoeba peronaphora gen. et sp. nov., isolated from an extremely hypersaline habitat. , 2009, Protist.

[33]  A. Oren Microbial life at high salt concentrations: phylogenetic and metabolic diversity , 2008, Saline systems.

[34]  A. Simpson,et al.  Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). , 2007, Protist.

[35]  N. Gunde-Cimerman,et al.  The Halophilic Fungus Hortaea werneckii and the Halotolerant Fungus Aureobasidium pullulans Maintain Low Intracellular Cation Concentrations in Hypersaline Environments , 2005, Applied and Environmental Microbiology.

[36]  M. Roberts Organic compatible solutes of halotolerant and halophilic microorganisms , 2005, Saline Systems.

[37]  M. Loureiro-Dias,et al.  Mechanisms underlying the halotolerant way of Debaryomyces hansenii. , 2005, FEMS yeast research.

[38]  D. Vaulot,et al.  Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. , 2005, FEMS microbiology ecology.

[39]  C. Berney,et al.  Molecular Phylogenetic Analysis Places Percolomonas cosmopolitus within Heterolobosea: Evolutionary Implications , 2004, The Journal of eukaryotic microbiology.

[40]  R. Rao,et al.  The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. , 1999, Microbiology.

[41]  M. Sogin,et al.  The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. , 1988, Gene.

[42]  J. Zeikus,et al.  Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus , 1988, Journal of bacteriology.

[43]  M. Borowitzka,et al.  The protozoa of a Western Australian hypersaline lagoon , 1983, Hydrobiologia.

[44]  J. Lanyi Salt-dependent properties of proteins from extremely halophilic bacteria , 1974 .

[45]  Jong Soo Park,et al.  Morphology and Phylogenetic Analyses of Three Novel Naegleria Isolated from Freshwaters on Jeju Island, Korea, During the Winter Period , 2018, The Journal of eukaryotic microbiology.

[46]  A. Simpson,et al.  Characterization of a Deep‐Branching Heterolobosean, Pharyngomonas turkanaensis n. sp., Isolated from a Non‐Hypersaline Habitat, and Ultrastructural Comparison of Cysts and Amoebae Among Pharyngomonas Strains , 2016, The Journal of eukaryotic microbiology.

[47]  Jong Soo Park Effects of different ion compositions on growth of obligately halophilic protozoan Halocafeteria seosinensis , 2011, Extremophiles.

[48]  F. Opperdoes,et al.  Oramoeba fumarolia gen. nov., sp. nov., a new marine heterolobosean amoeboflagellate growing at 54 °C. , 2011, European journal of protistology.

[49]  M. Droop Heteramoeba clara n. gen., n. sp., a sexual biphasic amoeba , 2004, Archiv für Mikrobiologie.

[50]  J. D. de Jonckheere,et al.  A temporary flagellate (mastigote) stage in the vahlkampfiid amoeba Willaertia magna and its possible evolutionary significance. , 1989, Bio Systems.

[51]  B. Javor Hypersaline Environments : Microbiology and Biogeochemistry , 1989 .

[52]  B. Javor Hypersaline Environments , 1989, Brock/Springer Series in Contemporary Bioscience.

[53]  John J. Lee,et al.  An illustrated guide to the protozoa , 1985 .

[54]  D. Kushner Life in high salt and solute concentrations: halophilic bacteria , 1978 .