HIGH-RESOLUTION NONPARAMETRIC SPECTRAL ANALYSIS: THEORY AND APPLICATIONS

Spectral estimation can be defined as the art of recovering the frequency content in a measured signal, and is a highly relevant problem in practice. In particular, many engineering problems, ranging from synthetic aperture radar (SAR) imaging to the analysis of time-series observed in seismology or astronomy, can be cast as a spectral analysis problem. A nonparametric spectral estimator is a method that, unlike parametric methods, attempts to compute the spectral content of a signal without using any a priori information or making any explicit assumption about it. While many smoothed versions of the discrete Fourier transform can be interpreted as nonparametric methods, a body of recent work has suggested more advanced such methods that are based on adaptive filterbanks. This chapter provides a review of some of the existing work in the area of nonparametric spectral estimation, including fast implementations of the most successful estimators as well as various extensions to spectral analysis of incomplete data. Numerical examples are provided to exemplify the various algorithms.

[1]  Ali H. Sayed,et al.  Stabilizing the Generalized Schur Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[2]  Jian Li,et al.  A new derivation of the APES filter , 1999, IEEE Signal Processing Letters.

[3]  Thomas P. Bronez,et al.  Spectral estimation of irregularly sampled multidimensional processes by generalized prolate spheroidal sequences , 1988, IEEE Trans. Acoust. Speech Signal Process..

[4]  T. Kailath,et al.  A generalized Schur-type algorithm for the joint factorization of a structured matrix and its inverse , 1996 .

[5]  Erik G. Larsson,et al.  SAR image construction from periodically gapped phase-history data , 2002, SPIE Defense + Commercial Sensing.

[6]  Andreas Jakobsson,et al.  Computationally efficient two-dimensional Capon spectrum analysis , 2000, IEEE Trans. Signal Process..

[7]  Andreas Jakobsson,et al.  Computationally efficient 2-D spectral estimation , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[8]  Philip B. Stark,et al.  Multitaper spectrum estimation for time series with gaps , 2000, IEEE Trans. Signal Process..

[9]  H.-M. Adorf,et al.  Interpolation of Irregularly Sampled Data Series---A Survey , 1995 .

[10]  Erik G. Larsson,et al.  Amplitude spectrum estimation for two-dimensional gapped data , 2002, IEEE Trans. Signal Process..

[11]  P. Stoica,et al.  High-resolution SAR imaging with angular diversity , 2001 .

[12]  Stuart R. DeGraaf,et al.  SAR imaging via modern 2-D spectral estimation methods , 1998, IEEE Trans. Image Process..

[13]  Dale A. Ausherman,et al.  Developments in Radar Imaging , 1984, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Inder J. Gupta,et al.  High-resolution radar imaging using 2-D linear prediction , 1994 .

[15]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[16]  P Stoica,et al.  Nonparametric NMR spectroscopy. , 2001, Journal of magnetic resonance.

[17]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[18]  Yingbo Hua,et al.  High resolution imaging of continuously moving object using stepped frequency radar , 1994, Signal Process..

[19]  Jian Li,et al.  Efficient implementation of Capon and APES for spectral estimation , 1998 .

[20]  Jian Li,et al.  Performance analysis of forward-backward matched-filterbank spectral estimators , 1998, IEEE Trans. Signal Process..

[21]  Petre Stoica,et al.  Forward-only and forward-backward sample covariances - A comparative study , 1999, Signal Process..

[22]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[23]  Jeffrey D. Scargle,et al.  Astronomical Time Series Analysis , 1997 .

[24]  Stuart R. DeGraaf,et al.  Sidelobe reduction via adaptive FIR filtering in SAR imagery , 1994, IEEE Trans. Image Process..

[25]  Andreas Jakobsson,et al.  Capon and APES spectrum estimation for real-valued signals , 1998 .

[26]  Bruce R. Musicus Fast MLM power spectrum estimation from uniformly spaced correlations , 1985, IEEE Trans. Acoust. Speech Signal Process..

[27]  Bjorn Ottersten,et al.  Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing , 1993 .

[28]  D. Munson,et al.  A tomographic formulation of spotlight-mode synthetic aperture radar , 1983, Proceedings of the IEEE.

[29]  Andreas Jakobsson,et al.  Matched-filter bank interpretation of some spectral estimators , 1998, Signal Process..

[30]  Jian Li,et al.  An efficient algorithm for two-dimensional frequency estimation , 1996, Multidimens. Syst. Signal Process..

[31]  Jun Yu Li,et al.  Time-varying complex spectral analysis via recursive APES , 1998 .

[32]  Thomas Kailath,et al.  Fast reliable algorithms for matrices with structure , 1999 .

[33]  Petre Stoica,et al.  Two-Dimensional Capon Spectrum Analysis , 1999 .

[34]  SignalsandSystemsGroup UppsalaUniversity ON EFFICIENT IMPLEMENTATION OF THE CAPON ALGORITHM , 1999 .

[35]  T. Kailath,et al.  Fast Parallel Algorithms for QR and Triangular Factorization , 1987 .

[36]  Jian Li,et al.  Amplitude estimation of sinusoidal signals: survey, new results, and an application , 2000, IEEE Trans. Signal Process..

[37]  S. Unnikrishna Pillai,et al.  Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[38]  Andreas Jakobsson Model-Based and Matched-Filterbank Signal Analysis , 1999 .

[39]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[40]  Erik G. Larsson The Ubiquitous Signal Processing: Applications to Communications, Spectral Analysis and Array Processing , 2002 .

[41]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[42]  Jung Ah Choi Lee,et al.  Spatially variant apodization for image reconstruction from partial Fourier data , 2000, IEEE Trans. Image Process..

[43]  Erik G. Larsson,et al.  Adaptive Filter-bank Approach to Restoration and Spectral Analysis of Gapped Data* , 2000 .

[44]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[45]  J. Capon Maximum-likelihood spectral estimation , 1979 .

[46]  Jian Li,et al.  An adaptive filtering approach to spectral estimation and SAR imaging , 1996, IEEE Trans. Signal Process..

[47]  Jian Li,et al.  Complex ISAR imaging of maneuvering targets via the Capon estimator , 1999, IEEE Trans. Signal Process..

[48]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[49]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[50]  Jian Li,et al.  Using APES for interferometric SAR imaging , 1998, IEEE Trans. Image Process..

[51]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[52]  Fulvio Gini,et al.  Multilook APES for multibaseline SAR interferometry , 2002, IEEE Trans. Signal Process..

[53]  P. Stoica,et al.  Combining Capon and APES for estimation of spectral lines , 2000 .

[54]  Gerald R. Benitz,et al.  ATR performance using enhanced resolution SAR , 1996, Defense, Security, and Sensing.

[55]  Erik G. Larsson,et al.  Fast Implementation of Two-Dimensional APES and CAPON Spectral Estimators , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[56]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[57]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[58]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[59]  Yang-Ho Choi,et al.  On conditions for the rank restoration in forward/backward spatial smoothing , 2002, IEEE Trans. Signal Process..

[60]  Erik G. Larsson,et al.  Spectral estimation via adaptive filterbank methods: a unified analysis and a new algorithm , 2002, Signal Process..

[61]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[62]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .