An enhanced Immersed Structural Potential Method for fluid-structure interaction

Within the group of immersed boundary methods employed for the numerical simulation of fluid-structure interaction problems, the Immersed Structural Potential Method (ISPM) was recently introduced (Gil et al., 2010) [1] in order to overcome some of the shortcomings of existing immersed methodologies. In the ISPM, an incompressible immersed solid is modelled as a deviatoric strain energy functional whose spatial gradient defines a fluid-structure interaction force field in the Navier-Stokes equations used to resolve the underlying incompressible Newtonian viscous fluid. In this paper, two enhancements of the methodology are presented. First, the introduction of a new family of spline-based kernel functions for the transfer of information between both physics. In contrast to classical IBM kernels, these new kernels are shown not to introduce spurious oscillations in the solution. Second, the use of tensorised Gaussian quadrature rules that allow for accurate and efficient numerical integration of the immersed structural potential. A series of numerical examples will be presented in order to demonstrate the capabilities of the enhanced methodology and to draw some key comparisons against other existing immersed methodologies in terms of accuracy, preservation of the incompressibility constraint and computational speed.

[1]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[2]  Hong Zhao,et al.  A fixed-mesh method for incompressible flow-structure systems with finite solid deformations , 2008, J. Comput. Phys..

[3]  Oubay Hassan,et al.  Partitioned block-Gauss-Seidel coupling for dynamic fluid-structure interaction , 2010 .

[4]  Patrick D. Anderson,et al.  A fluid-structure interaction method with solid-rigid contact for heart valve dynamics , 2006, J. Comput. Phys..

[5]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[6]  Lucy T. Zhang,et al.  On computational issues of immersed finite element methods , 2009, J. Comput. Phys..

[7]  A. Ibrahimbegovic Nonlinear Solid Mechanics , 2009 .

[8]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[9]  Wing Kam Liu,et al.  The immersed/fictitious element method for fluid–structure interaction: Volumetric consistency, compressibility and thin members , 2008 .

[10]  Boyce E. Griffith,et al.  An adaptive, formally second order accurate version of the immersed boundary method , 2007, J. Comput. Phys..

[11]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[12]  Charles S Peskin,et al.  A look-ahead model for the elongation dynamics of transcription. , 2009, Biophysical journal.

[13]  S. Takeuchi,et al.  Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow , 2010 .

[14]  Eihan Shimizu,et al.  Regularization Methods for Multicollinearity and Their Empirical Comparison , 1998 .

[15]  Zhaosheng Yu A DLM/FD method for fluid/flexible-body interactions , 2005 .

[16]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[17]  van R Raoul Loon A 3D method for modelling the fluid-structure interaction of heart valves , 2005 .

[18]  Wing Kam Liu,et al.  Mathematical foundations of the immersed finite element method , 2006 .

[19]  R. Beerends,et al.  Fourier and Laplace Transforms: Contents , 2003 .

[20]  Antonio J. Gil,et al.  The Immersed Structural Potential Method for haemodynamic applications , 2010, J. Comput. Phys..

[21]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[22]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[23]  Lucy T. Zhang,et al.  Interpolation functions in the immersed boundary and finite element methods , 2010 .

[24]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[25]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[26]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[27]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[28]  T. Hughes,et al.  Finite rotation effects in numerical integration of rate constitutive equations arising in large‐deformation analysis , 1980 .

[29]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[30]  Wing Kam Liu,et al.  Extended immersed boundary method using FEM and RKPM , 2004 .

[31]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[32]  J. C. van den Berg,et al.  Fourier and Laplace Transforms: Distributions , 2003 .

[33]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[34]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[35]  George Bergeles,et al.  DEVELOPMENT AND ASSESSMENT OF A VARIABLE-ORDER NON-OSCILLATORY SCHEME FOR CONVECTION TERM DISCRETIZATION , 1998 .

[36]  D J Wheatley,et al.  Dynamic modelling of prosthetic chorded mitral valves using the immersed boundary method. , 2007, Journal of biomechanics.

[37]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[38]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[39]  J. Anderson,et al.  Computational fluid dynamics : the basics with applications , 1995 .

[40]  J. Zhu,et al.  On the higher-order bounded discretization schemes for finite volume computations of incompressible flows , 1992 .

[41]  C. Peskin,et al.  A three-dimensional computational method for blood flow in the heart. II. contractile fibers , 1989 .

[42]  P. Gaskell,et al.  Curvature‐compensated convective transport: SMART, A new boundedness‐ preserving transport algorithm , 1988 .

[43]  J. Brackbill,et al.  A numerical method for suspension flow , 1991 .

[44]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[45]  Boyce E. Griffith,et al.  Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method , 2009 .

[46]  J. C. van den Berg,et al.  Fourier and Laplace Transforms: Laplace transforms , 2003 .

[47]  C. Peskin,et al.  Fluid Dynamics of the Heart and its Valves , 1996 .

[48]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[49]  David Farrell,et al.  Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.

[50]  C. Peskin,et al.  A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid , 1989 .

[51]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[52]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[53]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[54]  Howard L. Schreyer,et al.  Fluid–membrane interaction based on the material point method , 2000 .

[55]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[56]  Damian J. J. Farnell,et al.  Numerical Simulations of a Filament In a Flowing Soap Film , 2004 .