Anomaly detection and important bands selection for hyperspectral images via sparse PCA

We propose a regularised version of the classical singular value decomposition for simultaneous outliers and associated important bands selection. The contributions are twofold: First, we exploit sequential optimisation techniques in L0 formulation to obtain sparse solution of classical principal component analysis. Second, we have develop new formulation for the anomaly detection problem where the simultaneous identification of important bands can be performed. Experiments in real and simulated data are included to validate the proposed method.

[1]  Alexandre d'Aspremont,et al.  Optimal Solutions for Sparse Principal Component Analysis , 2007, J. Mach. Learn. Res..

[2]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, NIPS 2004.

[3]  Hiroshi Motoda,et al.  Feature Extraction, Construction and Selection , 1998 .

[4]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[5]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[6]  Jianhua Z. Huang,et al.  Sparse principal component analysis via regularized low rank matrix approximation , 2008 .

[7]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[8]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[9]  Hiroshi Motoda,et al.  Feature Extraction, Construction and Selection: A Data Mining Perspective , 1998 .

[10]  Giles M. Foody,et al.  Feature Selection for Classification of Hyperspectral Data by SVM , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Zhi-Hao Cao,et al.  A note on variational representation for singular values of matrix , 2003, Appl. Math. Comput..

[12]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[14]  Saharon Rosset,et al.  Tracking Curved Regularized Optimization Solution Paths , 2004, NIPS 2004.

[15]  James Theiler,et al.  Ellipsoid-simplex hybrid for hyperspectral anomaly detection , 2011, 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[16]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[17]  Tao Shi,et al.  Scalable Spectral Algorithms for Community Detection in Directed Networks , 2012, ArXiv.

[18]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[19]  Zongming Ma Sparse Principal Component Analysis and Iterative Thresholding , 2011, 1112.2432.