Blind Deconvolution Using Generalized Cross-Validation Approach to Regularization Parameter Estimation

In this paper, we propose and present an algorithm for total variation (TV)-based blind deconvolution. Both the unknown image and blur can be estimated within an alternating minimization framework. With the generalized cross-validation (GCV) method, the regularization parameters associated with the unknown image and blur can be updated in alternating minimization steps. Experimental results confirm that the performance of the proposed algorithm is better than variational Bayesian blind deconvolution algorithms with Student's-t priors or a total variation prior.

[1]  Russell M. Mersereau,et al.  Blur identification by the method of generalized cross-validation , 1992, IEEE Trans. Image Process..

[2]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .

[3]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[4]  Aggelos K. Katsaggelos,et al.  Variational Bayesian Blind Deconvolution Using a Total Variation Prior , 2009, IEEE Transactions on Image Processing.

[5]  Richard G. Lane,et al.  Automatic multidimensional deconvolution , 1987 .

[6]  M. Ng Iterative Methods for Toeplitz Systems , 2004 .

[7]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.

[8]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[9]  M. Cannon Blind deconvolution of spatially invariant image blurs with phase , 1976 .

[10]  Nikolas P. Galatsanos,et al.  Variational Bayesian Sparse Kernel-Based Blind Image Deconvolution With Student's-t Priors , 2009, IEEE Transactions on Image Processing.

[11]  Aggelos K. Katsaggelos,et al.  Maximum likelihood blur identification and image restoration using the EM algorithm , 1991, IEEE Trans. Signal Process..

[12]  Gene H. Golub,et al.  Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.

[13]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[14]  Ke Chen,et al.  An Optimization-Based Multilevel Algorithm for Total Variation Image Denoising , 2006, Multiscale Model. Simul..

[15]  A. Murat Tekalp,et al.  Maximum likelihood image and blur identification: a unifying , 1990 .

[16]  Aggelos K. Katsaggelos,et al.  A VQ-based blind image restoration algorithm , 2003, IEEE Trans. Image Process..

[17]  K. Egiazarian,et al.  Blind image deconvolution , 2007 .

[18]  G. Golub,et al.  Generalized cross-validation for large scale problems , 1997 .

[19]  Mostafa Kaveh,et al.  Blind image restoration by anisotropic regularization , 1999, IEEE Trans. Image Process..

[20]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[21]  K. Adami Variational Methods in Bayesian Deconvolution , 2003 .

[22]  F. Grund Forsythe, G. E. / Malcolm, M. A. / Moler, C. B., Computer Methods for Mathematical Computations. Englewood Cliffs, New Jersey 07632. Prentice Hall, Inc., 1977. XI, 259 S , 1979 .

[23]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[24]  Aggelos K. Katsaggelos,et al.  Blind Deconvolution Using a Variational Approach to Parameter, Image, and Blur Estimation , 2006, IEEE Transactions on Image Processing.

[25]  Nikolas P. Galatsanos,et al.  A variational approach for Bayesian blind image deconvolution , 2004, IEEE Transactions on Signal Processing.

[26]  William E. Higgins,et al.  Watershed-based maximum-homogeneity filtering , 1999, IEEE Trans. Image Process..

[27]  Misha Elena Kilmer,et al.  Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems , 2000, SIAM J. Matrix Anal. Appl..

[28]  Nikolas P. Galatsanos,et al.  Projection-based blind deconvolution , 1994 .

[29]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[30]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[31]  Michael K. Ng,et al.  On Semismooth Newton’s Methods for Total Variation Minimization , 2007, Journal of Mathematical Imaging and Vision.

[32]  Deepa Kundur,et al.  A novel blind deconvolution scheme for image restoration using recursive filtering , 1998, IEEE Trans. Signal Process..

[33]  Michael K. Ng,et al.  Regularization of RIF blind image deconvolution , 2000, IEEE Trans. Image Process..

[34]  Michael K. Ng,et al.  Lipschitz and total-variational regularization for blind deconvolution , 2008 .

[35]  Michael K. Ng,et al.  A Fast Total Variation Minimization Method for Image Restoration , 2008, Multiscale Model. Simul..

[36]  Michael W. Marcellin,et al.  Blur identification from vector quantizer encoder distortion , 1998, IEEE Trans. Image Process..

[37]  Fang Li,et al.  Selection of regularization parameter in total variation image restoration. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  NG MICHAELK. A FAST `1-TV ALGORITHM FOR IMAGE RESTORATION , 2008 .

[39]  David J. C. MacKay,et al.  Ensemble Learning for Blind Image Separation and Deconvolution , 2000 .

[40]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[41]  Junfeng Yang,et al.  A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration , 2009, SIAM J. Imaging Sci..

[42]  Jonathon A. Chambers,et al.  An enhanced NAS-RIF algorithm for blind image deconvolution , 1999, IEEE Trans. Image Process..

[43]  Michael K. Ng,et al.  A Fast l1-TV Algorithm for Image Restoration , 2009, SIAM J. Sci. Comput..

[44]  Mostafa Kaveh,et al.  A regularization approach to joint blur identification and image restoration , 1996, IEEE Trans. Image Process..

[45]  Jean-Luc Starck,et al.  Deconvolution and Blind Deconvolution in Astronomy , 2007 .