Accuracy improvement by implementing sequential measurement update in robust Kalman filter

A robust Kalman filter based on Chi square test with sequential measurement update is proposed. This approach can not only handle outliers in part or even individual measurement channel, but can also further improve the accuracy especially when a novel ordering strategy in processing the measurement elements is adopted. The accuracy improvement can be attributed to the higher statistical efficiency, i.e., an increased probability of correctly resisting the outlying measurement elements and retaining the good ones. The accuracy improvement of the proposed method is illustrated by a simulating example.

[1]  Yuanxi Yang,et al.  Robust Kalman filter for rank deficient observation models , 1998 .

[2]  P.J.G. Teunissen,et al.  Quality control in integrated navigation systems , 1990, IEEE Aerospace and Electronic Systems Magazine.

[3]  Peter Teunissen,et al.  Single-receiver single-channel multi-frequency GNSS integrity: outliers, slips, and ionospheric disturbances , 2013, Journal of Geodesy.

[4]  Karl-Rudolf Koch,et al.  Minimal detectable outliers as measures of reliability , 2015, Journal of Geodesy.

[5]  Kees De Jong Minimal Detectable Biases of Cross-Correlated GPS Observations , 2000 .

[6]  J. Guo,et al.  The case-deletion and mean-shift outlier models: equivalence and beyond , 2013, Acta Geodaetica et Geophysica.

[7]  R. Lehmann On the formulation of the alternative hypothesis for geodetic outlier detection , 2013, Journal of Geodesy.

[8]  Peter Teunissen,et al.  A recursive slippage test for use in state-space , 1989 .

[9]  Martin Salzmann MDB: A design tool for integrated navigation systems , 1991 .

[10]  G. Chang,et al.  M-estimator-based robust Kalman filter for systems with process modeling errors and rank deficient measurement models , 2015 .

[11]  S. Hekimoglu,et al.  Increasing the efficacy of the tests for outliers for geodetic networks , 2011 .

[12]  C. Karlgaard Nonlinear Regression Huber–Kalman Filtering and Fixed-Interval Smoothing , 2015 .

[13]  Peter Teunissen,et al.  An Integrity and Quality Control Procedure for Use in Multi Sensor Integration , 1990 .

[14]  G. Chang Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion , 2014, Journal of Geodesy.

[15]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[16]  W. Baarda,et al.  A testing procedure for use in geodetic networks. , 1968 .

[17]  D. Kogoj,et al.  Processing kinematic geodetic measurements using Kalman filtering , 2008 .

[18]  Yang Yuanxi,et al.  Robust bayesian estimation , 1991 .

[19]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[20]  Rüdiger Lehmann,et al.  3σ-Rule for Outlier Detection from the Viewpoint of Geodetic Adjustment , 2013 .

[21]  N. Perfetti,et al.  Detection of station coordinate discontinuities within the Italian GPS Fiducial Network , 2006 .

[22]  Yuanxi Yang,et al.  Adaptively robust filtering for kinematic geodetic positioning , 2001 .

[23]  Pavel Třasák,et al.  Outlier detection efficiency in the high precision geodetic network adjustment , 2014, Acta Geodaetica et Geophysica.

[24]  Martin Salzmann MDB: A design tool for integrated navigation systems , 1991 .

[25]  Rüdiger Lehmann,et al.  Improved critical values for extreme normalized and studentized residuals in Gauss–Markov models , 2012, Journal of Geodesy.

[26]  Peter Teunissen,et al.  Minimal detectable biases of GPS data , 1998 .