Dotted interval graphs and high throughput genotyping

We introduce a generalization of interval graphs, which we call <i>dotted interval graphs (DIG).</i> A dotted interval graph is an intersection graph of arithmetic progressions (=<i>dotted intervals</i>). Coloring of dotted intervals graphs naturally arises in the context of high throughput genotyping. We study the properties of dotted interval graphs, with a focus on coloring. We show that any graph is a <i>DIG</i> but that <i>DIG<inf>d</inf></i> graphs, i.e. DIGs in which the arithmetic progressions have a jump of at most <i>d</i>, form a strict hierarchy. We show that coloring <i>DIG<inf>d</inf></i>, graphs is NP-complete even for <i>d</i> = 2. For any fixed <i>d</i>, we provide a 7/8<i>d</i> approximation for the coloring of <i>DIG<inf>d</inf></i> graphs.

[1]  András Gyárfás,et al.  On the chromatic number of multiple interval graphs and overlap graphs , 1985, Discret. Math..

[2]  D. West Multitrack Interval Graphs , 1995 .

[3]  L. Zane,et al.  Strategies for microsatellite isolation: a review , 2002, Molecular ecology.

[4]  W S Oetting,et al.  Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. , 1995, Genomics.

[5]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[6]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[7]  Hans Söderlund,et al.  Assigning probes into a small number of pools separable by electrophoresis , 2002, ISMB.

[8]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[9]  Reuven Bar-Yehuda,et al.  Scheduling split intervals , 2002, SODA '02.

[10]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[11]  David B. Shmoys,et al.  Recognizing graphs with fixed interval number is NP-complete , 1984, Discret. Appl. Math..

[12]  Yonatan Aumann,et al.  Designing optimally multiplexed SNP genotyping assays , 2003, J. Comput. Syst. Sci..

[13]  M. Ekker,et al.  A microsatellite genetic linkage map for zebrafish (Danio rerio) , 1998, Nature Genetics.

[14]  W. Hsu,et al.  AN APPROXIMATION ALGORITHM FOR COLORING CIRCULAR-ARC GRAPHS , 2003 .

[15]  A. Syvänen,et al.  Multiplex, fluorescent, solid-phase minisequencing for efficient screening of DNA sequence variation. , 1996, Clinical chemistry.

[16]  P. Deloukas,et al.  A Gene Map of the Human Genome , 1996, Science.

[17]  Frank Harary,et al.  On double and multiple interval graphs , 1979, J. Graph Theory.