ArF Excimer Laser Annealing of Polycrystalline Silicon Thin Film

Crystallization of amorphous silicon (a-Si) using excimer laser annealing (ELA) has been reported since 1994 by Watanabe group. It is known as the best method to fabricate a good poly-silicon because it can heat the film up to the melting point and, at the same time no thermal damage occur into the glass substrate (Carluccio et al., 1997; Matsumura and Oh, 1999). ELA technique is widely used to increase the grain size and changes the microstructure of polysilicon thin film which is the most important characteristics of excellent built-in polysilicon devices (Palani et al., (2008). The principle advantage of excimer lasers is the strong absorption of ultraviolet (UV) light in silicon beside having larger beam size and high energy density than other laser light sources (Watanabe, et al. 1994). Another major advantage of the excimer lasers is it low-temperature polysilicon annealing. Excimer laser with 308 nm wavelength for example has been reported can transform 50-nm-thin layers of amorphous silicon into high-quality polycrystalline silicon with greatly enhanced electron mobility, for use in flat-panel displays for mobile phones and flat-screen televisions (Delmdahl, 2010). In the low-temperature annealing of polysilicon, excimer lasers with UV output energies of over 1 J per pulse and output powers of 600 W are used to manufacture liquid-crystal and organic LED backplanes at a rate of 100 cm2 s–1. A new VYPER/LB750 line beam annealing system enables volume production of low-temperature polysilicon (LTPS) on large generation 6 glass panels. LTPS is the key material for high-resolution liquid crystal displays (LCDs) and organic lightemitting diode (OLED) displays for smartphones, tablet PCs and TVs.

[1]  N. Bidin,et al.  Effect of Multipulses Exposure on Excimer Laser Annealed Polycrystalline Silicon Thin Films , 2011 .

[2]  N. Bidin,et al.  Crystallization of poly-silicon film by different annealing techniques , 2011, 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC).

[3]  Ralph Delmdahl,et al.  The excimer laser: Precision engineering , 2010 .

[4]  Jun Zhou,et al.  Numerical and experimental analysis on green laser crystallization of amorphous silicon thin films , 2009 .

[5]  Sooseok Choi,et al.  Crystallization of amorphous silicon thin film by using a thermal plasma jet , 2009 .

[6]  M. Singaperumal,et al.  Crystallization and ablation in annealing of amorphous-Si thin film on glass and crystalline-Si substrates irradiated by third harmonics of Nd3+:YAG laser , 2008 .

[7]  R. Ishihara,et al.  Agglomeration of amorphous silicon film with high energy density excimer laser irradiation , 2007 .

[8]  P. Basore,et al.  CSG-1: Manufacturing a New Polycrystalline Silicon PV Technology , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[9]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[10]  Nicolas Wyrsch,et al.  Material and solar cell research in microcrystalline silicon , 2003 .

[11]  H. Strunk,et al.  Excimer laser crystallization of amorphous silicon on metal coated glass substrates , 2003 .

[12]  G. Fortunato,et al.  Crystallization mechanisms in laser irradiated thin amorphous silicon films , 2003 .

[13]  Martin A. Green,et al.  Crystalline and thin-film silicon solar cells: state of the art and future potential , 2003 .

[14]  C. Afonso,et al.  Recalescence after bulk solidification in germanium films melted by ns laser pulses , 2003 .

[15]  S. Nishio,et al.  Polymer laser photochemistry, ablation, reconstruction, and polymerization , 2001 .

[16]  Alexander A. Serafetinides,et al.  Ultra-short pulsed laser ablation of polymers , 2001 .

[17]  S. Campbell The Science and Engineering of Microelectronic Fabrication , 2001 .

[18]  T. Lippert,et al.  Comparison of the Ablation Behavior of Polymer Films in the IR and UV with Nanosecond and Picosecond Pulses , 1999 .

[19]  Masakiyo Matsumura,et al.  Advanced excimer-laser annealing process for quasi single-crystal silicon thin-film devices , 1999 .

[20]  Siu Chung Tam,et al.  Excimer laser drilling of polymers , 1997, Other Conferences.

[21]  R. Singh,et al.  Transient recrystallization of amorphous silicon films , 1997 .

[22]  G. Fortunato,et al.  Structure of poly-Si films obtained by laser annealing , 1997 .

[23]  Rajesh S. Patel,et al.  Masks for laser ablation technology: new requirements and challenges , 1995, Photomask Technology.

[24]  Ben G. Streetman,et al.  Solid state electronic devices (4th ed.) , 1995 .

[25]  Koji Kawasaki,et al.  Crystallization Process of Polycrystalline Silicon by KrF Excimer Laser Annealing , 1994 .

[26]  A. Atrens,et al.  Rapid Solidification Characteristics in Melt Spinning , 1992 .

[27]  Jeff Hecht,et al.  Understanding Lasers: An Entry-Level Guide , 1992 .

[28]  R. Sauerbrey,et al.  Theory for the etching of organic materials by ultraviolet laser pulses , 1989 .

[29]  T. Takagi,et al.  Grain boundary diffusion control of Cu films prepared by the ICB technique , 1989 .

[30]  J. Brannon,et al.  Excimer laser etching of polyimide , 1985 .

[31]  R. Srinivasan,et al.  Microscopic model for the ablative photodecomposition of polymers by far‐ultraviolet radiation (193 nm) , 1984 .

[32]  R. Srinivasan,et al.  Self-developing photoetching of poly(ethylene terephthalate) films by far-ultraviolet excimer laser radiation , 1982 .

[33]  J. Bourgoin,et al.  Crystallization in amorphous silicon , 1979 .

[34]  J R A Beale,et al.  Solid State Electronic Devices , 1973 .

[35]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[36]  A. Shah Surface treatment of polymethylmethacrylate by excimer laser ablation , 2009 .

[37]  Martin A. Green,et al.  Recent developments in photovoltaics , 2004 .

[38]  A. L. Greer,et al.  Effects of Positive Feedback on Crystallization Kinetics and Recalescence , 2003 .

[39]  Amal K. Ghosh,et al.  Theory of the electrical and photovoltaic properties of polycrystalline silicon , 1980 .