Multiplying Schur Q-functions

[1]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[2]  Adriano M. Garsia,et al.  Shuffles of permutations and the Kronecker product , 1985, Graphs Comb..

[3]  Frank Sottile,et al.  Tableau Switching: Algorithms and Applications , 1996, J. Comb. Theory, Ser. A.

[4]  Sergey Fomin,et al.  A Littlewood-Richardson Miscellany , 1993, Eur. J. Comb..

[5]  Bruce E. Sagan Shifted tableaux, schur Q-functions, and a conjecture of R. Stanley , 1987, J. Comb. Theory, Ser. A.

[6]  Dale Raymond Worley,et al.  A theory of shifted Young tableaux , 1984 .

[7]  Marcel P. Schützenberger Quelques remarques sur une Construction de Schensted. , 1963 .

[8]  D. E. Littlewood,et al.  Group Characters and Algebra , 1934 .

[9]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[10]  P. Pragacz Algebro — Geometric applications of schur s- and q-polynomials , 1991 .

[11]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[12]  Dennis E. White Some Connections between the Littlewood-Richardson , 1981, J. Comb. Theory, Ser. A.

[13]  J. Stembridge Shifted tableaux and the projective representations of symmetric groups , 1989 .

[14]  A. Zelevinsky,et al.  A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence , 1981 .

[15]  Mark D. Haiman On mixed insertion, symmetry, and shifted young tableaux , 1989, J. Comb. Theory, Ser. A.

[16]  Jeffrey B. Remmel,et al.  Multiplying Schur functions , 1984, J. Algorithms.

[17]  Marcel Paul Schützenberger,et al.  La correspondance de Robinson , 1977 .