THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr

We present the discovery of four surprisingly bright (H160 � 26 27 mag AB) galaxy candidates at z � 9 10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z � 10 galaxy candidates that are known, just �500 Myr after the Big Bang. Two similarly bright sources are also detected in a systematic re-analysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5 6.2� in the very deep Spitzer/IRAC 4.5µm data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z = 10.2 ± 0.4) is robustly detected also at 3.6µm (6.9�), revealing a flat UV spectral energy distribution with a slope � = 2.0±0.2, consistent with demonstrated trends with luminosity at high redshift. The abundance of such luminous candidates suggests that the luminosity function evolves more significantly in �∗ than in L∗ at z & 8 with a higher number density of bright sources than previously expected. Despite the discovery of these luminous candidates, the cosmic star formation rate density for galaxies with SFR > 0.7 M⊙ yr −1 shows an order-of-magnitude increase in only 170 Myr from z � 10 to z � 8, consistent with previous results given the dominance of low-luminosity sources to the total SFR density. Based on the IRAC detections, we derive galaxy stellar masses at z � 10, finding that these luminous objects are typically 10 9 M⊙. This allows for a first estimate of the cosmic stellar mass density at z � 10 resulting in log10 �∗ = 4.7 +0.5 −0.8 M⊙ Mpc −3 for galaxies brighter than MUV � 18. The remarkable brightness, and hence luminosity, of these z � 9 10 candidates highlights the opportunity for deep spectroscopy to determine their redshift and nature, demonstrates the value of additional search fields covering a wider area to understand star-formation in the very early universe, and highlights the opportunities for JWST to map the buildup of galaxies at redshifts much earlier than z � 10. Subject headings: galaxies: evolution — galaxies: high-redshift — galaxies: luminosity function

[1]  M. Franx,et al.  ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB-L* z ∼ 7 AND z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION , 2009, 0910.0838.

[2]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[3]  J. W. MacKenty,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: DESIGN AND PRELIMINARY RESULTS , 2010, 1011.4075.

[4]  Ralf Bender,et al.  The mass of galaxies at low and high redshift : proceedings of the European Southern Observatory and Universitäts-Sternwarte München workshop held in Venice, Italy, 24-26 October 2001 , 2003 .

[5]  R. Bouwens,et al.  EXPANDED SEARCH FOR z ∼ 10 GALAXIES FROM HUDF09, ERS, AND CANDELS DATA: EVIDENCE FOR ACCELERATED EVOLUTION AT z > 8? , 2011, 1105.2297.

[6]  K. Nagamine,et al.  IMPACT OF H2-BASED STAR FORMATION MODEL ON THE z ⩾ 6 LUMINOSITY FUNCTION AND THE IONIZING PHOTON BUDGET FOR REIONIZATION , 2013, 1301.5270.

[7]  Z. Cai,et al.  PROBING VERY BRIGHT END OF GALAXY LUMINOSITY FUNCTION AT z ≳ 7 USING HUBBLE SPACE TELESCOPE PURE PARALLEL OBSERVATIONS , 2010, 1010.2261.

[8]  R. Bouwens,et al.  A REST-FRAME OPTICAL VIEW ON z ∼ 4 GALAXIES. I. COLOR AND AGE DISTRIBUTIONS FROM DEEP IRAC PHOTOMETRY OF THE IUDF10 AND GOODS SURVEYS , 2012, 1211.1010.

[9]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[10]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[11]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[12]  K. Nagamine,et al.  Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization , 2011, 1104.2345.

[13]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[14]  R. Bouwens,et al.  z ∼ 7 GALAXY CANDIDATES FROM NICMOS OBSERVATIONS OVER THE HDF-SOUTH AND THE CDF-SOUTH AND HDF-NORTH GOODS FIELDS , 2010, 1003.1706.

[15]  M. Dickinson,et al.  z ∼ 4 Hα EMITTERS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: TRACING THE DOMINANT MODE FOR GROWTH OF GALAXIES , 2011 .

[16]  G. Fazio,et al.  FOUR IRAC SOURCES WITH AN EXTREMELY RED H − [3.6] COLOR: PASSIVE OR DUSTY GALAXIES AT z > 4.5? , 2011, 1110.4129.

[17]  R. Bouwens,et al.  A TENTATIVE DETECTION OF AN EMISSION LINE AT 1.6 μm FOR THE z ∼ 12 CANDIDATE UDFj-39546284 , 2013, 1301.0317.

[18]  M. Franx,et al.  THE BRIGHT END OF THE ULTRAVIOLET LUMINOSITY FUNCTION AT z ∼ 8: NEW CONSTRAINTS FROM CANDELS DATA IN GOODS-SOUTH , 2012, 1201.0755.

[19]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[20]  D. Schaerer,et al.  The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.

[21]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[22]  S. Wilkins,et al.  The ultraviolet properties of star-forming galaxies – I. HST WFC3 observations of very high redshift galaxies , 2011, 1106.5977.

[23]  V. Wild,et al.  The UV continua and inferred stellar populations of galaxies at z ~7-9 revealed by the Hubble Ultra-Deep Field 2012 campaign , 2012, 1212.0860.

[24]  R. Davé,et al.  SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2013 .

[25]  C. Megan Urry,et al.  VARIABILITY OF ACTIVE GALACTIC NUCLEI , 1997 .

[26]  R. Bouwens,et al.  THE GALAXY LUMINOSITY FUNCTION DURING THE REIONIZATION EPOCH , 2010, 1004.0384.

[27]  J. Dunlop,et al.  KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.

[28]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[29]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[30]  A. Fontana,et al.  The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field , , 2006, astro-ph/0603094.

[31]  R. Salvaterra,et al.  Simulating high‐redshift galaxies , 2010, 1003.3873.

[32]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[33]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[34]  T. Lauer,et al.  A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.

[35]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[36]  M. Franx,et al.  STAR FORMATION RATES AND STELLAR MASSES OF z = 7–8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS , 2009, 0911.1356.

[37]  Spitzer IRAC Confirmation of z850-Dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at z 7 , 2006, astro-ph/0608444.

[38]  R. Davé,et al.  LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z ≈ 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY , 2012 .

[39]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[40]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[41]  C. Conselice,et al.  CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4 , 2011, 1110.3785.

[42]  Michele Cirasuolo,et al.  EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.3869.

[43]  R. Bouwens,et al.  THE REST-FRAME UV-TO-OPTICAL COLORS AND SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 4–7 GALAXIES , 2011, 1110.6441.

[44]  M. Franx,et al.  THE HST EXTREME DEEP FIELD (XDF): COMBINING ALL ACS AND WFC3/IR DATA ON THE HUDF REGION INTO THE DEEPEST FIELD EVER , 2013, 1305.1931.

[45]  Peter Schneider,et al.  Gravitational Lensing: Strong, Weak and Micro , 2006 .

[46]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[47]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[48]  Casey Papovich,et al.  TFIT: A Photometry Package Using Prior Information for Mixed‐Resolution Data Sets , 2007 .

[49]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[50]  R. Bouwens,et al.  PROBING THE DAWN OF GALAXIES AT z ∼ 9–12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA , 2013, 1301.6162.

[51]  R. Bouwens,et al.  THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR , 2012, 1209.3037.

[52]  B. Robertson ESTIMATING LUMINOSITY FUNCTION CONSTRAINTS FROM HIGH-REDSHIFT GALAXY SURVEYS , 2010, 1001.1008.

[53]  R. Bouwens,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION , 2012, 1204.3641.

[54]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[55]  G. Zamorani,et al.  The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006 .

[56]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[57]  P. McCarthy,et al.  VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES, , 2011, 1109.0639.

[58]  Adam J. Burgasser,et al.  The 2MASS Wide-Field T Dwarf Search. III. Seven New T Dwarfs and Other Cool Dwarf Discoveries , 2004, astro-ph/0402325.

[59]  J. Trump,et al.  EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1 , 2011, 1107.5256.

[60]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[61]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[62]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[63]  Toru Yamada,et al.  MOIRCS Deep Survey. I : DRG Number Counts , 2006, astro-ph/0610349.

[64]  K. Nagamine,et al.  Duty cycle and the increasing star formation history of z ≥ 6 galaxies , 2012, 1204.4846.

[65]  A. Fontana,et al.  THE NATURE OF EXTREMELY RED H − [4.5] > 4 GALAXIES REVEALED WITH SEDS AND CANDELS , 2012, 1202.0496.

[66]  R. Windhorst,et al.  A distortion of very-high-redshift galaxy number counts by gravitational lensing , 2011, Nature.

[67]  Peter Anders,et al.  Spectral and photometric evolution of young stellar populations: The impact of gaseous emission at various metallicities , 2003, astro-ph/0302146.

[68]  S. J. Lilly,et al.  THE BUILDUP OF THE HUBBLE SEQUENCE IN THE COSMOS FIELD , 2009, 0911.1126.

[69]  M. Franx,et al.  LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE UV LUMINOSITY FUNCTIONS AT z ⩾ 5–8 FROM THE HUDF09 WFC3/IR OBSERVATIONS , 2011, 1105.2038.

[70]  J. Vieira,et al.  KECK-I MOSFIRE SPECTROSCOPY OF THE z ∼ 12 CANDIDATE GALAXY UDFj-39546284 , 2013, 1307.4089.

[71]  J. Dunlop,et al.  Simulating the assembly of galaxies at redshifts z = 6–12 , 2012, 1211.1034.

[72]  Garth D. Illingworth,et al.  z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions , 2008, 0803.0548.

[73]  J. Dunlop,et al.  THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.4819.

[74]  M. Jarvis,et al.  Constraining the bright-end of the UV luminosity function for z 7-9 galaxies: results from CANDELS/GOODS-South , 2012, 1210.8417.

[75]  R. Bouwens,et al.  CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.