Structure and mechanical properties of Ti–6Al–4V with a replicated network of elongated pores

[1]  D. Dunand,et al.  Ti-6Al-4V with micro- and macropores produced by powder sintering and electrochemical dissolution of steel wires , 2010 .

[2]  R. B. Wicker,et al.  Advanced metal powder based manufacturing of complex components by electron beam melting , 2009 .

[3]  P. Voorhees,et al.  Morphological analysis of pores in directionally freeze-cast titanium foams , 2009 .

[4]  D. Dunand,et al.  Creating Aligned, Elongated Pores in Titanium Foams by Swaging of Preforms with Ductile Space‐Holder , 2009 .

[5]  Hyoun‐Ee Kim,et al.  Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries , 2008 .

[6]  David C. Dunand,et al.  Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2 , 2008 .

[7]  David C. Dunand,et al.  Porous Titanium by Electro‐chemical Dissolution of Steel Space‐holders , 2008 .

[8]  Yan Li,et al.  Porosity and mechanical properties of porous titanium fabricated by gelcasting , 2008 .

[9]  J. Lim,et al.  Properties of solid core and porous surface Ti–6Al–4V implants manufactured by powder metallurgy , 2008 .

[10]  W. Lee,et al.  Mechanical properties of fully porous and porous-surfaced Ti–6Al–4V implants fabricated by electro-discharge-sintering , 2007 .

[11]  Han-Ming Chow,et al.  Effects of finishing in abrasive fluid machining on microholes fabricated by EDM , 2007 .

[12]  N. Petrinic,et al.  An experimental investigation of rate-dependent deformation and failure of three titanium alloys , 2007 .

[13]  R. Scandurra,et al.  Effect of titanium carbide coating on the osseointegration response in vitro and in vivo. , 2007, Biomaterials.

[14]  M. L. Young,et al.  Composites by aluminum infiltration of porous silicon carbide derived from wood precursors , 2006 .

[15]  D. Dunand,et al.  Effect of initial preform porosity on solid-state foaming of titanium , 2006 .

[16]  P. J. Reucroft,et al.  One-step process for the fabrication of Ti porous compact and its surface modification by environmental-electro-discharge-sintering of spherical Ti powders , 2006 .

[17]  M. von Walter,et al.  Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. , 2006, Biomaterials.

[18]  D. Dunand,et al.  Effect of thermal history on the superplastic expansion of argon-filled pores in titanium: Part I kinetics and microstructure , 2004 .

[19]  Jing Liang,et al.  Microstructures of laser-deposited Ti–6Al–4V , 2004 .

[20]  Hans Peter Buchkremer,et al.  Study of production route for titanium parts combining very high porosity and complex shape , 2004 .

[21]  D. Dunand,et al.  Microstructure evolution during solid-state foaming of titanium , 2003 .

[22]  J. Tuukkanen,et al.  Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. , 2003, Biomaterials.

[23]  R. Huiskes,et al.  Stemmed femoral knee prostheses: effects of prosthetic design and fixation on bone loss. , 2002, Acta orthopaedica Scandinavica.

[24]  D. Dunand,et al.  Enhanced densification of zinc powders through thermal cycling , 2002 .

[25]  Wang Zhenlong,et al.  Ultrasonic and electric discharge machining to deep and small hole on titanium alloy , 2002 .

[26]  Mamoru Mabuchi,et al.  Processing of biocompatible porous Ti and Mg , 2001 .

[27]  D. Dunand,et al.  Whisker alignment of Ti–6Al–4V/TiB composites during deformation by transformation superplasticity , 2001 .

[28]  T. J. Kim,et al.  Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants , 2001, Journal of materials science. Materials in medicine.

[29]  D. Dunand,et al.  Non-isothermal transformation-mismatch plasticity: Modeling and experiments on Ti-6Al-4V , 2001 .

[30]  Lorna J. Gibson,et al.  Mechanical Behavior of Metallic Foams , 2000 .

[31]  D. Dunand,et al.  Enhanced densification of metal powders by transformation-mismatch plasticity , 2000 .

[32]  B. Yan,et al.  Micro slit machining using electro-discharge machining with a modified rotary disk electrode (RDE) , 1999 .

[33]  D. Puleo,et al.  Mechanism of Consolidation of a Porous-Surfaced Ti–6Al–4V Implant Formed by Electrodischarge Compaction , 1999 .

[34]  A. Evans,et al.  Porous and cellular materials for structural applications , 1998 .

[35]  E. Collings,et al.  Materials Properties Handbook: Titanium Alloys , 1994 .

[36]  Ronald M. Gilgenbach,et al.  Copper vapor laser drilling of copper, iron, and titanium foils in atmospheric pressure air and argon , 1993 .

[37]  D. K. Kim,et al.  Physical characteristics of Ti-6A1-4V implants fabricated by electrodischarge compaction. , 1991, Journal of biomedical materials research.

[38]  K. Ikeuchi,et al.  Effects of Carbon Content on the Diffusion Bonding of Iron and Steel to Titanium , 1990 .

[39]  D. Read,et al.  Orthorhombic elastic constants of an NbTi/Cu composite superconductor , 1977 .

[40]  Erik Luijten,et al.  Structural properties of materials created through freeze casting , 2010 .

[41]  D. Dunand,et al.  Directionally freeze-cast titanium foam with aligned, elongated pores , 2008 .

[42]  C. Zou,et al.  Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres , 2008, Journal of materials science. Materials in medicine.

[43]  Douglas T. Queheillalt,et al.  Creep expansion of porous Ti-6Al-4V sandwich structures , 2000 .

[44]  D. Simbi,et al.  The effect of residual interstitial elements and iron on mechanical properties of commercially pure titanium , 1996 .

[45]  P. Withers,et al.  An introduction to metal matrix composites , 1993 .

[46]  M. Musgrave,et al.  Crystal Acoustics: Introduction to the Study of Elastic Waves and Vibrations in Crystals , 1970 .