Recommending multimedia web services in a multi-device environment

In the last years, the Web community has shown a broad interest in Web services that handle multimedia contents. To improve the usability of these services different tools have been proposed in the literature, and in this context agent-based recommender systems appear to be a promising solution. However, the recommender systems presented in the past do not take into account, in their recommendation algorithms, the effect of the device exploited by the user, while it is clear that the same user shows a different behavior in the presence of different devices. This paper tries to give a contribution in this setting, in order to match more accurately user preferences and interests. In particular, a new agent-based system is proposed, whose architecture allows to compute recommendations of multimedia Web services, considering the effect of the currently exploited device. Some experimental results confirm the high quality of the recommendations generated by the proposed approach.

[1]  Johan Koolwaaij,et al.  Extending UDDI with Context-Aware Features Based on Semantic Service Descriptions , 2003, ICWS.

[2]  Tran Cao Son,et al.  Semantic Web Services , 2001, IEEE Intell. Syst..

[3]  Giuseppe M. L. Sarnè,et al.  TRES: A Decentralized Agent-Based Recommender System to Support B2C Activities , 2009, KES-AMSTA.

[4]  Dieter Fensel,et al.  The Web Service Modeling Framework WSMF , 2002, Electron. Commer. Res. Appl..

[5]  T.V. Prabhakar,et al.  Dynamic selection of Web services with recommendation system , 2005, International Conference on Next Generation Web Services Practices (NWeSP'05).

[6]  P. K. Kannan,et al.  E-Service: New Directions in Theory and Practice , 2002 .

[7]  Giuseppe M. L. Sarnè,et al.  Modeling cooperation in multi-agent communities , 2004, Cognitive Systems Research.

[8]  Gade Krishna,et al.  A scalable peer-to-peer lookup protocol for Internet applications , 2012 .

[9]  Dieter Fensel Semantic Web Enabled Web Services , 2002, KI.

[10]  BurkeRobin Hybrid Recommender Systems , 2002 .

[11]  Sean M. McNee,et al.  Lessons on Applying Automated Recommender Systems to Information-Seeking Tasks , 2006, AAAI.

[12]  Matthew Montebello,et al.  DAML Enabled Web Services and Agents in the Semantic Web , 2002, Web, Web-Services, and Database Systems.

[13]  Futai Zou,et al.  PWSD: A Scalable Web Service Discovery Architecture Based on Peer-to-Peer Overlay Network , 2004, APWeb.

[14]  Jinghua Huang,et al.  A Survey of E-Commerce Recommender Systems , 2007, 2007 International Conference on Service Systems and Service Management.

[15]  Wolfgang Nejdl,et al.  A scalable and ontology-based P2P infrastructure for Semantic Web Services , 2002, Proceedings. Second International Conference on Peer-to-Peer Computing,.

[16]  Antonino Nocera,et al.  Recommendation of reliable users, social networks and high-quality resources in a Social Internetworking System , 2011, AI Commun..

[17]  Mick Kerrigan,et al.  Web service selection mechanisms in the Web Service Execution Environment (WSMX) , 2006, SAC.

[18]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[19]  Georg Lausen,et al.  On exploiting classification taxonomies in recommender systems , 2008, AI Commun..

[20]  Giuseppe M. L. Sarnè,et al.  A multi-agent recommender system for supporting device adaptivity in e-Commerce , 2011, Journal of Intelligent Information Systems.

[21]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[22]  Shonali Krishnaswamy,et al.  A fuzzy model for reasoning about reputation in web services , 2006, SAC.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Giuseppe M. L. Sarnè,et al.  EFFICIENT PERSONALIZATION OF E‐LEARNING ACTIVITIES USING A MULTI‐DEVICE DECENTRALIZED RECOMMENDER SYSTEM , 2010, Comput. Intell..

[25]  Mark van Setten,et al.  Supporting People in Finding Information: Hybrid Recommender Systems and Goal-Based Structuring , 2005 .

[26]  Joachim Peer,et al.  Bringing Together Semantic Web and Web Services , 2002, SEMWEB.

[27]  Athanasios K. Tsakalidis,et al.  Contemporary Web Service Discovery Mechanisms , 2006, J. Web Eng..

[28]  Stanley Y. W. Su,et al.  A united approach to discover multimedia Web services , 2003, Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings..

[29]  Joseph A. Konstan,et al.  Introduction to recommender systems , 2008, SIGMOD Conference.

[30]  Mark Klein,et al.  Serching for services on the semantic web using process ontologies , 2001, The Emerging Semantic Web.

[31]  Peter Thomas,et al.  On Specifying Web Services Using UDDI Improvements , 2002 .

[32]  Sheila A. McIlraith,et al.  A Bottom-Up Approach to Automating Web Service Discovery, Customization, and Semantic Translation , 2003 .

[33]  Domenico Rosaci,et al.  CILIOS: Connectionist inductive learning and inter-ontology similarities for recommending information agents , 2007, Inf. Syst..

[34]  Josep Lluís de la Rosa i Esteva,et al.  A Taxonomy of Recommender Agents on the Internet , 2003, Artificial Intelligence Review.

[35]  Eleni Stroulia,et al.  Flexible interface matching for Web-service discovery , 2003, Proceedings of the Fourth International Conference on Web Information Systems Engineering, 2003. WISE 2003..

[36]  Jerry R. Hobbs,et al.  DAML-S: Web Service Description for the Semantic Web , 2002, SEMWEB.

[37]  Jia Zhang,et al.  A SOAP-oriented component-based framework supporting device-independent multimedia Web services , 2002, Fourth International Symposium on Multimedia Software Engineering, 2002. Proceedings..

[38]  Domenico Rosaci,et al.  Trust measures for competitive agents , 2012, Knowl. Based Syst..

[39]  Giuseppe M. L. Sarnè,et al.  MUADDIB: A distributed recommender system supporting device adaptivity , 2009, TOIS.

[40]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[41]  Yanchun Zhang,et al.  Algorithm for web services matching , 2004 .

[42]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[43]  Jos de Bruijn,et al.  Web Service Modeling Ontology , 2005, Appl. Ontology.

[44]  Vincenzo D'Andrea,et al.  Web Service Discovery Based on Past User Experience , 2007, BIS.

[45]  Giuseppe M. L. Sarnè,et al.  EC-XAMAS: SUPPORTING E-COMMERCE ACTIVITIES BY AN XML-BASED ADAPTIVE MULTI-AGENT SYSTEM , 2007, Appl. Artif. Intell..

[46]  Yanchun Zhang,et al.  Web Services Discovery Based On Schema Matching , 2007, ACSC.

[47]  Barry Smyth,et al.  Collaborative Web Search , 2009, IJCAI.

[48]  Peter Thomas,et al.  WS-Specification: Specifying Web Services Using UDDI Improvements , 2002, Web, Web-Services, and Database Systems.

[49]  Enrico Motta,et al.  IRS-II: A Framework and Infrastructure for Semantic Web Services , 2003, SEMWEB.

[50]  E. Michael Maximilien,et al.  Conceptual model of web service reputation , 2002, SGMD.

[51]  Nikos Manouselis,et al.  Analysis and Classification of Multi-Criteria Recommender Systems , 2007, World Wide Web.

[52]  James Bennett,et al.  The Netflix Prize , 2007 .

[53]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[54]  David M. Pennock,et al.  CROC: A New Evaluation Criterion for Recommender Systems , 2005, Electron. Commer. Res..

[55]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[56]  Hui Wang,et al.  Multiagent System for Reputation--based Web Services Selection , 2006, 2006 Sixth International Conference on Quality Software (QSIC'06).

[57]  Takahiro Kawamura,et al.  Semantic Matching of Web Services Capabilities , 2002, SEMWEB.

[58]  John Riedl,et al.  Recommender systems: from algorithms to user experience , 2012, User Modeling and User-Adapted Interaction.