Reverse Mathematics and Countable Algebraic Systems
暂无分享,去创建一个
[1] László Fuchs,et al. Infinite Abelian groups , 1970 .
[2] New equivalents of the axiom of choice and consequences , 2009 .
[3] Wilhelm Magnus,et al. The History of Combinatorial Group Theory: A Case Study in the History of Ideas , 1982 .
[4] Joseph R. Mileti,et al. Ideals in computable rings , 2007 .
[5] Miles Reid,et al. Undergraduate Commutative Algebra , 1995 .
[6] Ernst Witt. Beweisstudien zum Satz von M. Zorn , 1998 .
[7] J. Łoś. Un théorème sur les superpositions des fonctions définies dans les ensembles arbitraires , 1950 .
[8] Ulrich Kohlenbach,et al. Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.
[9] Denis R. Hirschfeldt,et al. Combinatorial principles weaker than Ramsey's Theorem for pairs , 2007, J. Symb. Log..
[10] Stephen G. Simpson,et al. Addendum to "countable algebra and set existence axioms" , 1985, Ann. Pure Appl. Log..
[11] Reed Solomon,et al. Ordered Groups: A Case Study in Reverse Mathematics , 1999, Bulletin of Symbolic Logic.
[12] Alberto Marcone,et al. Linear extensions of partial orders and reverse mathematics , 2012, Math. Log. Q..
[13] Peter M. Higgins,et al. Techniques of semigroup theory , 1991 .
[14] A. Tarski. A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .
[15] B. Schröder. Ordered Sets: An Introduction , 2012 .
[16] Honda Kin'ya. Realism in the theory of Abelian groups(III) , 1961 .
[17] Kazuyuki Tanaka,et al. Fixed Point Theory in Weak Second-Order Arithmetic , 1990, Ann. Pure Appl. Log..
[18] J. Paris,et al. ∑n-Collection Schemas in Arithmetic , 1978 .
[19] D. J. H. Garling,et al. Modern Algebra, Volume I , 1968, The Mathematical Gazette.
[20] Extensions of Commutative Rings in Subsystems of Second Order Arithmetic , 2005 .
[21] Hajime Ishihara,et al. Constructive reverse mathematics: compactness properties , 2005, From sets and types to topology and analysis.
[22] Charles F. Miller. Decision Problems for Groups — Survey and Reflections , 1992 .
[23] Stephen G. Simpson,et al. Countable algebra and set existence axioms , 1983, Ann. Pure Appl. Log..
[24] A. Davis,et al. A characterization of complete lattices , 1955 .
[25] Petr Hájek,et al. Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.
[26] G. Markowsky. Chain-complete posets and directed sets with applications , 1976 .
[27] Jeffry L. Hirst,et al. Connected components of graphs and reverse mathematics , 1992, Arch. Math. Log..
[28] Jeffry L. Hirst,et al. Reverse mathematics, computability, and partitions of trees , 2009, J. Symb. Log..
[29] Smbat Abian,et al. A theorem on partially ordered sets, with applications to fixed point theorems , 1961 .
[30] Factorization of Polynomials and ~1 Induction* O. Introduction (for Algebraists) , 1985 .
[31] Nicolas Bourbaki,et al. Sur le théorème de Zorn , 1949 .
[32] Piotr Hoffman. A PROOF OF ISBELL’S ZIGZAG THEOREM , 2008, Journal of the Australian Mathematical Society.
[33] Brian A. Davey,et al. Introduction to Lattices and Order: Frontmatter , 2002 .
[34] K. Rangaswamy. Characterisation Oe Intersections of Neat Subgroups of Abelian Groups , 1965 .
[35] Stephen G. Simpson,et al. Ordinal numbers and the Hilbert basis theorem , 1988, Journal of Symbolic Logic.
[36] Carl G. Jockusch,et al. Ramsey's theorem and recursion theory , 1972, Journal of Symbolic Logic.
[37] Manuel Lerman,et al. Separating Principles below Ramsey's Theorem for Pairs , 2013, J. Math. Log..
[38] Jiayi Liu,et al. RT2 2 does not imply WKL0 , 2012, The Journal of Symbolic Logic.
[39] Benedict H Eastaugh. Review of Denis R. Hirschfeldt, Slicing the Truth: On the Computability Theoretic and Reverse Mathematical Analysis of Combinatorial Principles , 2017 .
[40] J. Howie. Fundamentals of semigroup theory , 1995 .
[41] Chris J. Conidis. Chain conditions in computable rings , 2010 .
[42] S. Cook,et al. Logical Foundations of Proof Complexity: INDEX , 2010 .
[43] R. Soare. Recursively enumerable sets and degrees , 1987 .
[44] Joseph R. Mileti,et al. Subspaces of computable vector spaces , 2007 .
[45] Kostas Hatzikiriakou. Algebraic disguises ofΣ10 induction , 1989, Arch. Math. Log..
[46] L. Kantorovitch. The method of successive approximation for functional equations , 1939 .
[47] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[48] Reed Solomon,et al. Reverse Mathematics and Fully Ordered Groups , 1998, Notre Dame J. Formal Log..
[49] E. Specker. Ramsey's Theorem does not Hold in Recursive Set Theory , 1971 .
[50] Theodore A. Slaman,et al. On the Strength of Ramsey's Theorem , 1995, Notre Dame J. Formal Log..
[51] W. Magnus,et al. Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations , 1966 .
[52] Takashi Sato,et al. Reverse mathematics and Isbell's zig‐zag theorem , 2014, Math. Log. Q..