A globally convergent primal-dual interior-point filter method for nonlinear programming

Abstract.In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters.The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, whose sizes are controlled by a trust-region type parameter. Each entry in the filter is a pair of coordinates: one resulting from feasibility and centrality, and associated with the normal step; the other resulting from optimality (complementarity and duality), and related with the tangential step.Global convergence to first-order critical points is proved for the new primal-dual interior-point filter algorithm.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  John K. Reid,et al.  Some Design Features of a Sparse Matrix Code , 1979, TOMS.

[3]  李幼升,et al.  Ph , 1989 .

[4]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[5]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[6]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[7]  R. Tapia,et al.  On the characterization of Q-superlinear convergence of quasi-Newton interior-point methods for nonlinear programming , 1995 .

[8]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[9]  Hiroshi Yamashita,et al.  Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization , 1996, Math. Program..

[10]  T. Tsuchiya,et al.  On the formulation and theory of the Newton interior-point method for nonlinear programming , 1996 .

[11]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[12]  Jorge Nocedal,et al.  On the Local Behavior of an Interior Point Method for Nonlinear Programming , 1997 .

[13]  Michael L. Overton,et al.  A Primal-dual Interior Method for Nonconvex Nonlinear Programming , 1998 .

[14]  Sven Leyffer,et al.  User manual for filterSQP , 1998 .

[15]  Anders Forsgren,et al.  Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..

[16]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[17]  Stefan Ulbrich,et al.  Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption , 1999, Math. Program..

[18]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[19]  P. Tseng Error Bounds and Superlinear Convergence Analysis of Some Newton-Type Methods in Optimization , 2000 .

[20]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[21]  Lorenz T. Biegler,et al.  Failure of global convergence for a class of interior point methods for nonlinear programming , 2000, Math. Program..

[22]  Luís N. Vicente Local Convergence of the Affine-Scaling Interior-Point Algorithm for Nonlinear Programming , 2000, Comput. Optim. Appl..

[23]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[24]  R. Tapia,et al.  On the Global Convergence of a Modified Augmented Lagrangian Linesearch Interior-Point Newton Method for Nonlinear Programming , 2002 .

[25]  Robert J. Vanderbei,et al.  Interior-Point Methods for Nonconvex Nonlinear Programming: Filter Methods and Merit Functions , 2002, Comput. Optim. Appl..

[26]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[27]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[28]  Sven Leyffer,et al.  On the Global Convergence of a Filter--SQP Algorithm , 2002, SIAM J. Optim..

[29]  Stephen J. Wright,et al.  Properties of the Log-Barrier Function on Degenerate Nonlinear Programs , 2002, Math. Oper. Res..

[30]  Nicholas I. M. Gould,et al.  Global Convergence of a Trust-Region SQP-Filter Algorithm for General Nonlinear Programming , 2002, SIAM J. Optim..

[31]  Lorenz T. Biegler,et al.  Global and Local Convergence of Line Search Filter Methods for Nonlinear Programming , 2002 .

[32]  Stephen J. Wright,et al.  Local Convergence of a Primal-Dual Method for Degenerate Nonlinear Programming , 2002, Comput. Optim. Appl..

[33]  Stefan Ulbrich,et al.  Non-monotone trust region methods for nonlinear equality constrained optimization without a penalty function , 2003, Math. Program..

[34]  Roger Fletcher,et al.  On the global convergence of an SLP–filter algorithm that takes EQP steps , 2003, Math. Program..

[35]  Andreas Wächter,et al.  A Primal-Dual Interior-Point Method for Nonlinear Programming with Strong Global and Local Convergence Properties , 2003, SIAM J. Optim..

[36]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[37]  Charles Audet,et al.  A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..

[38]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[39]  Hiroshi Yamashita,et al.  A globally and superlinearly convergent primal-dual interior point trust region method for large scale constrained optimization , 2005, Math. Program..

[40]  Nicholas I. M. Gould,et al.  Numerical methods for large-scale nonlinear optimization , 2005, Acta Numerica.

[41]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[42]  Donald Goldfarb,et al.  l2-PENALTY METHODS FOR NONLINEAR PROGRAMMING WITH STRONG GLOBAL CONVERGENCE PROPERTIES , 2004 .