From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups

We approach the hidden subgroup problem by performing the so-called pretty good measurement on hidden subgroup states. For various groups that can be expressed as the semidirect product of an abelian group and a cyclic group, we show that the pretty good measurement is optimal and that its probability of success and unitary implementation are closely related to an average-case algebraic problem. By solving this problem, we find efficient quantum algorithms for a number of nonabelian hidden subgroup problems, including some for which no efficient algorithm was previously known: certain metacyclic groups as well as all groups of the form /spl Zopf//sub p/ /sup r/ /spl times/ /spl Zopf//sub p/ fixed r (including the Heisenberg group, r = 2). In particular our results show that entangled measurements across multiple copies of hidden subgroup states can be useful for efficiently solving the nonabelian HSP.

[1]  Kenjiro Shoda Über die Automorphismen einer endlichen Abelschen Gruppe , 1928 .

[2]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[3]  A. Holevo Statistical decision theory for quantum systems , 1973 .

[4]  Robert S. Kennedy,et al.  Optimum testing of multiple hypotheses in quantum detection theory , 1975, IEEE Trans. Inf. Theory.

[5]  J. Lindy Books , 1985, The Lancet.

[6]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[7]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[8]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[9]  William K. Wootters,et al.  A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .

[10]  Richard J. Lipton,et al.  Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.

[11]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[12]  P. Høyer Efficient Quantum Transforms , 1997, quant-ph/9702028.

[13]  Robert Beals,et al.  Quantum computation of Fourier transforms over symmetric groups , 1997, STOC '97.

[14]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[15]  Wim van Dam Two Classical Queries versus One Quantum Query , 1998, ArXiv.

[16]  T. Beth,et al.  Polynomial-Time Solution to the Hidden Subgroup Problem for a Class of non-abelian Groups , 1998, quant-ph/9812070.

[17]  Mark Ettinger,et al.  On Quantum Algorithms for Noncommutative Hidden Subgroups , 1998, STACS.

[18]  P. Høyer,et al.  A Quantum Observable for the Graph Isomorphism Problem , 1999, quant-ph/9901029.

[19]  Alexander Russell,et al.  Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.

[20]  Sean Hallgren,et al.  Efficient Quantum Algorithms for Shifted Quadratic Character Problems , 2000, ArXiv.

[21]  Umesh V. Vazirani,et al.  Quantum mechanical algorithms for the nonabelian hidden subgroup problem , 2001, STOC '01.

[22]  John Watrous,et al.  Quantum algorithms for solvable groups , 2000, STOC '01.

[23]  Gadiel Seroussi,et al.  Efficient Quantum Algorithms for Estimating Gauss Sums , 2002, quant-ph/0207131.

[24]  Oded Regev,et al.  Quantum computation and lattice problems , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[25]  P. Hayden,et al.  Renyi-entropic bounds on quantum communication , 2002 .

[26]  W. V. Dam Quantum Computing Discrete Logarithms with the Help of a Preprocessed State , 2003 .

[27]  T. Hogg,et al.  Experimental implementation of an adiabatic quantum optimization algorithm. , 2003, Physical review letters.

[28]  Frédéric Magniez,et al.  Hidden translation and orbit coset in quantum computing , 2002, STOC '03.

[29]  Lawrence Ip Shor ’ s Algorithm is Optimal , 2003 .

[30]  W. V. Dam Comment on 'Quantum identification schemes with entanglements' , 2003, quant-ph/0307126.

[31]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[32]  Dmitry Gavinsky,et al.  Quantum solution to the hidden subgroup problem for poly-near-hamiltonian groups , 2004, Quantum Inf. Comput..

[33]  Alexander Yu. Vlasov,et al.  On Quantum Cellular Automata , 2004, ArXiv.

[34]  W. V. Dam Quantum Computing and Zeroes of Zeta Functions , 2004, quant-ph/0405081.

[35]  Alexander Russell,et al.  The power of basis selection in fourier sampling: hidden subgroup problems in affine groups , 2004, SODA '04.

[36]  Emanuel Knill,et al.  The quantum query complexity of the hidden subgroup problem is polynomial , 2004, Inf. Process. Lett..

[37]  O. Regev A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space , 2004, quant-ph/0406151.

[38]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[39]  W. Dam Summary of Delsarte's "Nombre de Solutions des Equations Polynomiales sur un Corps Fini" , 2004, math/0401066.

[40]  F. Gall,et al.  An Efficient Algorithm for the Hidden Subgroup Problem over a Class of Semi-direct Product Groups , 2004 .

[41]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[42]  M. Freedman,et al.  Nonlocality & Communication Complexity , 2004 .

[43]  Peter Grünwald,et al.  The statistical strength of nonlocality proofs , 2003, IEEE Transactions on Information Theory.

[44]  Greg Kuperberg A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem , 2005, SIAM J. Comput..

[45]  Jaikumar Radhakrishnan,et al.  On the Power of Random Bases in Fourier Sampling: Hidden Subgroup Problem in the Heisenberg Group , 2005, ICALP.

[46]  Alexander Russell,et al.  The symmetric group defies strong Fourier sampling , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[47]  Dave Bacon,et al.  Optimal measurements for the dihedral hidden subgroup problem , 2005, Chic. J. Theor. Comput. Sci..

[48]  Alexander Russell,et al.  For distinguishing conjugate hidden subgroups, the pretty good measurement is as good as it gets , 2007, Quantum Inf. Comput..