Comparative explorations of the revival and robustness for quantum dynamics under decoherence channels

In this paper, we demonstrate the revival and robustness of quantum dynamics under local decoherent evolutions through investigating the dynamical behaviors of quantum correlation. The results show that in depolarizing channel, quantum discord damps faster and revivals after a dark interval of time, while the others will revival immediately at the critical point. In addition, in hybrid channel the declining initial condition can speed up the attenuation of quantum discord within a limited time, while it can enable trace distance discord and Bures distance discord to damp more smoothly. In this sense, quantum discord is typically less robust against decoherence than the others. Interestingly, nonlocality shows different decay rates in the vicinity of critical point. Additionally, we lastly provide a physical interpretation concerning these phenomena.

[1]  Fu-Guo Deng,et al.  Correlation dynamics of a two-qubit system in a Bell-diagonal state under non-identical local noises , 2012, Quantum Inf. Process..

[2]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[3]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[4]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[5]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[6]  R. Laflamme,et al.  Experimental detection of nonclassical correlations in mixed-state quantum computation , 2011, 1105.2262.

[7]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[8]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[9]  Matthias D. Lang,et al.  Quantum discord and the geometry of Bell-diagonal states. , 2010, Physical review letters.

[10]  Gerardo Adesso,et al.  All nonclassical correlations can be activated into distillable entanglement. , 2011, Physical review letters.

[11]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[12]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[13]  L. Davidovich,et al.  Experimental investigation of the dynamics of entanglement : Sudden death, complementarity, and continuous monitoring of the environment , 2008, 0804.4556.

[14]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[15]  V. Scarani,et al.  Nonlocality of cluster states of qubits , 2004, quant-ph/0405119.

[16]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[17]  Ye Liu,et al.  Dynamics of entanglement under decoherence in noninertial frames , 2014 .

[18]  Hermann Kampermann,et al.  Linking quantum discord to entanglement in a measurement. , 2010, Physical review letters.

[19]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[20]  Gerardo Adesso,et al.  Negativity of quantumness and its interpretations , 2012, 1211.4022.

[21]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[22]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[23]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[24]  Liu Ye,et al.  Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements , 2015, Quantum Inf. Process..

[25]  Gernot Alber,et al.  Erratum: Quantum discord for two-qubit X states [Phys. Rev. A 81, 042105 (2010)] , 2010 .

[26]  Thiago O. Maciel,et al.  Witnessed entanglement and the geometric measure of quantum discord , 2012, 1207.1298.

[27]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[28]  L. Ye,et al.  QUANTUM CORRELATIONS OF TWO SPIN-1 PARTICLES IN THE OPTICAL LATTICE , 2014 .

[29]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[30]  Liu Ye,et al.  Multipartite concurrence for $$X$$X states under decoherence , 2013, Quantum Inf. Process..

[31]  S. Fei,et al.  Quantum Discord and Geometry for a Class of Two-qubit States , 2011, 1104.1843.

[32]  Debasis Sarkar,et al.  Decoherence dynamics of measurement-induced nonlocality and comparison with geometric discord for two qubit systems , 2012, Quantum Inf. Process..

[33]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[34]  G. Adesso,et al.  Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence , 2013, 1304.1163.

[35]  D. Spehner,et al.  Geometric quantum discord with Bures distance , 2013, 1304.3334.

[36]  F. M. Paula,et al.  Geometric quantum discord through the Schatten 1-norm , 2013, 1302.7034.