Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions

[1]  E. Peled,et al.  Lithium‐Sulfur Battery: Evaluation of Dioxolane‐Based Electrolytes , 1989 .

[2]  Petr Novák,et al.  Magnesium Insertion Electrodes for Rechargeable Nonaqueous Batteries — A Competitive Alternative to Lithium? , 1999 .

[3]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[4]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[5]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[6]  Daniel Sharon,et al.  LithiumOxygen Electrochemistry in Non‐Aqueous Solutions , 2015 .

[7]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[8]  D. Aurbach,et al.  Raman study of structural stability of LiCoPO4 cathodes in LiPF6 containing electrolytes , 2012 .

[9]  J. Fergus,et al.  The formation and stability of the solid electrolyte interface on the graphite anode , 2014 .

[10]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[11]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[12]  Doron Aurbach,et al.  A review on new solutions, new measurements procedures and new materials for rechargeable Li batteries , 2005 .

[13]  Doron Aurbach,et al.  Electrolyte solution for the improved cycling performance of LiCoPO4/C composite cathodes , 2013 .

[14]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[15]  Jun Yang,et al.  Electrochemical performance of novel electrolyte solutions based on organoboron magnesium salts , 2012 .

[16]  Lei Cheng,et al.  The unexpected discovery of the Mg(HMDS)2/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries , 2015 .

[17]  Kai Xie,et al.  Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries , 2014 .

[18]  Gregory V. Chase,et al.  Investigation of Fluorinated Amides for Solid–Electrolyte Interphase Stabilization in Li–O2 Batteries Using Amide-Based Electrolytes , 2013 .

[19]  Hun‐Gi Jung,et al.  Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. , 2013, ACS nano.

[20]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .

[21]  D. Aurbach,et al.  The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS , 2001 .

[22]  Doron Aurbach,et al.  On the Study of Electrolyte Solutions for Li-Ion Batteries That Can Work Over a Wide Temperature Range , 2010 .

[23]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[24]  H. Gasteiger,et al.  The Role of Electrolyte Solvent Stability and Electrolyte Impurities in the Electrooxidation of Li2O2 in Li-O2 Batteries , 2014 .

[25]  Richard T. Haasch,et al.  Surface Characterization of Electrodes from High Power Lithium-Ion Batteries , 2002 .

[26]  Xiaozhen Liao,et al.  Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte , 2008 .

[27]  Doron Aurbach,et al.  In Situ FTIR Spectroscopy Study of Li / LiNi0.8Co0.15Al0.05O2 Cells with Ionic Liquid-Based Electrolytes in Overcharge Condition , 2010 .

[28]  Robert Kostecki,et al.  Electrochemical activity of carbon blacks in LiPF6-based organic electrolytes , 2013 .

[29]  J. Dahn,et al.  Improving the long-term cycling performance of lithium-ion batteries at elevated temperature with electrolyte additives , 2015 .

[30]  P. Novák,et al.  Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide , 1995 .

[31]  Sean Parkin,et al.  A fast, inexpensive method for predicting overcharge performance in lithium-ion batteries , 2014 .

[32]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[33]  D. Aurbach,et al.  In Situ Raman Spectroscopy Study of Different Kinds of Graphite Electrodes in Ionic Liquid Electrolytes , 2008 .

[34]  Shiguo Zhang,et al.  Recent Advances in Electrolytes for Lithium–Sulfur Batteries , 2015 .

[35]  J. Chai,et al.  Functional lithium borate salts and their potential application in high performance lithium batteries , 2015 .

[36]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[37]  Dong Jin Lee,et al.  A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries , 2015 .

[38]  Doron Aurbach,et al.  New Horizons for Conventional Lithium Ion Battery Technology. , 2014, The journal of physical chemistry letters.

[39]  J. Dahn,et al.  High-Rate Overcharge Protection of LiFePO4-Based Li-Ion Cells Using the Redox Shuttle Additive 2,5-Ditertbutyl-1,4-dimethoxybenzene , 2005 .

[40]  Rémi Dedryvère,et al.  Surface film formation on a graphite electrode in Li‐ion batteries: AFM and XPS study , 2005 .

[41]  Dong‐Won Kim,et al.  Protective organic additives for high voltage LiNi0.5Mn1.5O4 cathode materials , 2014 .

[42]  Yang-Kook Sun,et al.  Understanding the behavior of Li–oxygen cells containing LiI , 2015 .

[43]  Doron Aurbach,et al.  The Correlation Between Charge/Discharge Rates and Morphology, Surface Chemistry, and Performance of Li Electrodes and the Connection to Cycle Life of Practical Batteries , 1998 .

[44]  Doron Aurbach,et al.  Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell , 1995 .

[45]  Rana Mohtadi,et al.  Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery** , 2012, Angewandte Chemie.

[46]  Jung-Hyun Kim,et al.  Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries , 2013 .

[47]  Qiang Wu,et al.  Evaluation of the low temperature performance of lithium manganese oxide/lithium titanate lithium-ion batteries for start/stop applications , 2015 .

[48]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[49]  D. Aurbach,et al.  Electrolyte Solutions for Rechargeable Magnesium Batteries Based on Organomagnesium Chloroaluminate Complexes , 2002 .

[50]  Linda F. Nazar,et al.  Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery , 2015 .

[51]  H. E. French,et al.  THE ELECTROLYSIS OF GRIGNARD SOLUTIONS1 , 1927 .

[52]  Hochun Lee,et al.  Effects of electrolyte-volume-to-electrode-area ratio on redox behaviors of graphite anodes for lithium-ion batteries , 2014 .

[53]  Doron Aurbach,et al.  A new advanced lithium ion battery: Combination of high performance amorphous columnar silicon thin film anode, 5 V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution , 2013 .

[54]  Bruno Scrosati,et al.  A high-performance polymer tin sulfur lithium ion battery. , 2010, Angewandte Chemie.

[55]  Doron Aurbach,et al.  The electrochemical behavior of selected polar aprotic systems , 1989 .

[56]  Doron Aurbach,et al.  Behavior of Graphite Electrodes in Solutions Based on Ionic Liquids in In Situ Raman Studies , 2008 .

[57]  Rong Wu,et al.  Reversible deposition and dissolution of magnesium from BMIMBF4 ionic liquid , 2005 .

[58]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[59]  J. Dahn,et al.  Evaluation of phenyl carbonates as electrolyte additives in lithium-ion batteries , 2015 .

[60]  Q. Qu,et al.  A Binary Cyclic Carbonates-Based Electrolyte Containing Propylene Carbonate and Trifluoropropylene Carbonate for 5 V Lithium-Ion Batteries , 2015 .

[61]  B. Lucht,et al.  Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries , 2011 .

[62]  D. Aurbach,et al.  On the electrochemical and thermal behavior of lithium bis(oxalato)borate (LiBOB) solutions , 2007 .

[63]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[64]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[65]  Hubert A. Gasteiger,et al.  The Effect of Water on the Discharge Capacity of a Non-Catalyzed Carbon Cathode for Li-O2 Batteries , 2012 .

[66]  Viktor Gutmann,et al.  Solvent effects on the reactivities of organometallic compounds , 1976 .

[67]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[68]  D. Aurbach,et al.  Hierarchical activated carbon microfiber (ACM) electrodes for rechargeable Li–O2 batteries , 2013 .

[69]  Timothy S. Arthur,et al.  Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries , 2012 .

[70]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[71]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[72]  Doron Aurbach,et al.  High performance of thick amorphous columnar monolithic film silicon anodes in ionic liquid electrolytes at elevated temperature , 2014 .

[73]  Doron Aurbach,et al.  On the Electrochemical Behavior of Aluminum Electrodes in Nonaqueous Electrolyte Solutions of Lithium Salts , 2010 .

[74]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[75]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[76]  Ruigang Zhang,et al.  α-MnO2 as a cathode material for rechargeable Mg batteries , 2012 .

[77]  Bruno Scrosati,et al.  Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery , 2011 .

[78]  Doron Aurbach,et al.  Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy , 2000 .

[79]  Martin Winter,et al.  Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes , 1995 .

[80]  Xiuling Gao,et al.  Electrochemical insertion of magnesium in open-ended vanadium oxide nanotubes , 2006 .

[81]  Doron Aurbach,et al.  Safety and Performance of Tadiran TLR‐7103 Rechargeable Batteries , 1996 .

[82]  Dominique Guyomard,et al.  The Li1+xMn2O4/C rocking-chair system: a review , 1993 .

[83]  Monte L. Helm,et al.  Highly active electrolytes for rechargeable Mg batteries based on a [Mg2(μ-Cl)2](2+) cation complex in dimethoxyethane. , 2015, Physical chemistry chemical physics : PCCP.

[84]  T. Mallouk,et al.  Organophosphates as solvents for electrolytes in electrochemical devices. , 2013, ACS applied materials & interfaces.

[85]  D. Aurbach,et al.  High‐Performance Lithium–Sulfur Batteries Based on Ionic‐Liquid Electrolytes with Bis(fluorolsufonyl)imide Anions and Sulfur‐Encapsulated Highly Disordered Activated Carbon , 2014 .

[86]  Moran Balaish,et al.  A critical review on lithium-air battery electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[87]  R. Staniewicz,et al.  Improved low temperature performance of lithium ion cells with quaternary carbonate-based electrolytes , 2003 .

[88]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[89]  D. Aurbach,et al.  The effect of the anionic framework of Mo6X8 Chevrel Phase (X = S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg2+ ions , 2005 .

[90]  J. Tarascon,et al.  Li Metal‐Free Rechargeable LiMn2 O 4 / Carbon Cells: Their Understanding and Optimization , 1992 .

[91]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[92]  S. Hirano,et al.  A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. , 2012, Chemical communications.

[93]  D. Aurbach,et al.  Significantly improved cycling performance of LiCoPO4 cathodes , 2011 .

[94]  D. Aurbach,et al.  Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[95]  Fan Zhang,et al.  Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries , 2012 .

[96]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[97]  B. Ratnakumar,et al.  Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates , 1999 .

[98]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[99]  D. Aurbach,et al.  Carbon Negative Electrodes for Li-Ion Batteries: The Effect of Solutions and Temperatures , 2014 .

[100]  Yong Yang,et al.  Recent progress in research on high-voltage electrolytes for lithium-ion batteries. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[101]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[102]  D. Aurbach,et al.  Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems , 1993 .

[103]  D. Aurbach,et al.  Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions , 2012 .

[104]  B. Yi,et al.  Low-temperature electrochemical performances of LiFePO4 cathode materials for lithium ion batteries , 2014 .

[105]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[106]  D. Shieh,et al.  A study of tetrabromobisphenol A (TBBA) as a flame retardant additive for Li-ion battery electrolytes , 2014 .

[107]  D. Aurbach,et al.  The Effect of Interactions and Reduction Products of LiNO3, the Anti-Shuttle Agent, in Li-S Battery Systems , 2015 .

[108]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[109]  D. Aurbach,et al.  Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries , 1992 .

[110]  Doron Aurbach,et al.  A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures , 1996 .

[111]  T. Gregory,et al.  Nonaqueous Electrochemistry of Magnesium Applications to Energy Storage , 1990 .

[112]  Doron Aurbach,et al.  Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[113]  D. T. Sawyer,et al.  Electrochemical studies of the reactivity of superoxide ion with several alkyl halides in dimethyl sulfoxide , 1970 .

[114]  D. Aurbach,et al.  The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li-S Battery Systems. , 2014, The journal of physical chemistry letters.

[115]  Jiulin Wang,et al.  A novel thiolate-based electrolyte system for rechargeable magnesium batteries , 2014 .

[116]  Sanjeev Mukerjee,et al.  A Study of the Influence of Lithium Salt Anions on Oxygen Reduction Reactions in Li-Air Batteries , 2015 .

[117]  Hubert A. Gasteiger,et al.  The Influence of Water and Protons on Li2O2 Crystal Growth in Aprotic Li-O2 Cells , 2015 .

[118]  Dan Sun,et al.  A solution-phase bifunctional catalyst for lithium-oxygen batteries. , 2014, Journal of the American Chemical Society.

[119]  Daniel Sharon,et al.  Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen , 2013 .

[120]  Shengbo Zhang,et al.  Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO3-Contained Electrolyte , 2012 .

[121]  Venkatasubramanian Viswanathan,et al.  Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O₂ batteries. , 2015, Nature chemistry.

[122]  Kaoru Dokko,et al.  Ionic Liquid Electrolytes for Lithium–Sulfur Batteries , 2013 .

[123]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[124]  Doron Aurbach,et al.  Revisiting LiClO4 as an Electrolyte for Rechargeable Lithium-Ion Batteries , 2010 .

[125]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[126]  M. Winter,et al.  Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods , 2014 .

[127]  Gregory A. Roberts,et al.  Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[128]  W. Henderson,et al.  Glyme-lithium salt phase behavior. , 2006, The journal of physical chemistry. B.

[129]  Daniel Sharon,et al.  On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM. , 2013, The journal of physical chemistry letters.

[130]  D. Aurbach,et al.  Progress in nonaqueous magnesium electrochemistry , 2007 .

[131]  Dominique Guyomard,et al.  High voltage stable liquid electrolytes for Li1+xMn2O4/carbon rocking-chair lithium batteries , 1995 .

[132]  Rana Mohtadi,et al.  An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries. , 2015, Angewandte Chemie.

[133]  D. Aurbach,et al.  Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries , 2008 .

[134]  Hua Ma,et al.  Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode , 2011, Advanced materials.

[135]  Bob R. Powell,et al.  Investigation of the Reasons for Capacity Fading in Li-Ion Battery Cells , 2014 .

[136]  Doron Aurbach,et al.  Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. , 2011, Journal of the American Chemical Society.

[137]  Doron Aurbach,et al.  Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[138]  Doron Aurbach,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[139]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[140]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[141]  Doron Aurbach,et al.  On the application of ionic liquids for rechargeable Li batteries: High voltage systems , 2009 .

[142]  Kang Xu,et al.  Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes , 2011 .

[143]  D. Aurbach,et al.  Alkyl Group Transmetalation Reactions in Electrolytic Solutions Studied by Multinuclear NMR , 2004 .

[144]  D. Aurbach,et al.  On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions , 1999 .

[145]  Zhengcheng Zhang,et al.  A Lewis acid-free and phenolate-based magnesium electrolyte for rechargeable magnesium batteries. , 2015, Chemical communications.

[146]  B. Liaw,et al.  A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .

[147]  L. Nazar,et al.  Oxide Catalysts for Rechargeable High‐Capacity Li–O2 Batteries , 2012 .

[148]  Doron Aurbach,et al.  Amorphous Columnar Silicon Anodes for Advanced High Voltage Lithium Ion Full Cells: Dominant Factors Governing Cycling Performance , 2013 .

[149]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[150]  R. D. Rauh,et al.  Formation of lithium polysulfides in aprotic media , 1977 .

[151]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[152]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[153]  A. Manthiram,et al.  Comparison of Metal Ion Dissolutions from Lithium Ion Battery Cathodes , 2006 .

[154]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[155]  Feng Li,et al.  Carbon–sulfur composites for Li–S batteries: status and prospects , 2013 .

[156]  L. Nazar,et al.  Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries , 2014 .

[157]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[158]  Emanuel Peled,et al.  Lithium Sulfur Battery Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions , 1988 .

[159]  Xiao Xing Liang,et al.  Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte , 2011 .