Identification of continuous-time systems using arbitrary signals

Abstract This paper presents a parametric frequencydomain identification algorithm for linear, time-invariant, continuous-time systems excited by arbitrary signals. Unlike the current available methods, this approach allows accurate modeling in the complete frequency band from DC to Nyquist.

[1]  R. Pintelon,et al.  Identification of linear systems captured in a feedback loop , 1992, [1992] Conference Record IEEE Instrumentation and Measurement Technology Conference.

[2]  F. Fairman,et al.  Identification in the presence of initial conditions , 1972 .

[3]  Diego P. Ruiz,et al.  Parameter estimation of exponentially damped sinusoids using a higher order correlation-based approach , 1995, IEEE Trans. Signal Process..

[4]  J. Schoukens,et al.  Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..

[5]  Hugo Van hamme,et al.  Identification of linear dynamic systems using piecewise constant excitations: Use, misuse and alternatives , 1994, Autom..

[6]  J. Schoukens,et al.  Frequency domain system identification using arbitrary signals , 1997, IEEE Trans. Autom. Control..

[7]  H. Unbehauen,et al.  Identification of continuous-time systems , 1991 .

[8]  Johan Schoukens,et al.  Modeling of continuous time systems using a discrete time representation , 1990, Autom..

[9]  Rik Pintelon,et al.  Identification of Linear Systems: A Practical Guideline to Accurate Modeling , 1991 .

[10]  J. Cooley,et al.  The Fast Fourier Transform , 1975 .

[11]  Brian D. O. Anderson,et al.  Identification of scalar errors-in-variables models with dynamics , 1985, Autom..

[12]  Gerd Vandersteen,et al.  General framework for asymptotic properties of generalized weighted nonlinear least-squares estimators with deterministic and stochastic weighting , 1996, IEEE Trans. Autom. Control..