The behaviour of eigenstates of arithmetic hyperbolic manifolds
暂无分享,去创建一个
[1] Y. C. Verdière,et al. Ergodicité et fonctions propres du laplacien , 1985 .
[2] V. I. Arnolʹd,et al. Ergodic problems of classical mechanics , 1968 .
[3] Dennis A. Hejhal,et al. On the Topography of Maass Waveforms for PSL(2, Z) , 1992, Exp. Math..
[4] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[5] E. Bogomolny,et al. Chaotic billiards generated by arithmetic groups. , 1992, Physical review letters.
[6] F. Steiner,et al. Energy-level statistics of the Hadamard-Gutzwiller ensemble , 1990 .
[7] H. Maass. Über die räumliche Verteilung der Punkte in Gittern mit indefiniter Metrik , 1959 .
[8] R. Aurich,et al. Statistical properties of highly excited quantum eigenstates of a strongly chaotic system , 1993 .
[9] P. Sarnak,et al. Number variance for arithmetic hyperbolic surfaces , 1994 .
[10] S. Helgason. Groups and geometric analysis , 1984 .
[11] P. Sarnak,et al. $L^\infty$ norms of eigenfunctions of arithmetic surfaces , 1995 .
[12] M. Eichler,et al. Lectures on modular correspondences , 1955 .
[13] J. Cassels,et al. Rational Quadratic Forms , 1978 .
[14] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[15] T. Shintani. On construction of holomorphic cusp forms of half integral weight , 1975, Nagoya Mathematical Journal.
[16] David Burton. Elementary Number Theory , 1976 .
[17] Steve Zelditch,et al. Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .