The behaviour of eigenstates of arithmetic hyperbolic manifolds

In this paper we study some problems arising from the theory of Quantum Chaos, in the context of arithmetic hyperbolic manifolds. We show that there is no strong localization (“scarring”) onto totally geodesic submanifolds. Arithmetic examples are given, which show that the random wave model for eigenstates does not apply universally in 3 degrees of freedom.

[1]  Y. C. Verdière,et al.  Ergodicité et fonctions propres du laplacien , 1985 .

[2]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[3]  Dennis A. Hejhal,et al.  On the Topography of Maass Waveforms for PSL(2, Z) , 1992, Exp. Math..

[4]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[5]  E. Bogomolny,et al.  Chaotic billiards generated by arithmetic groups. , 1992, Physical review letters.

[6]  F. Steiner,et al.  Energy-level statistics of the Hadamard-Gutzwiller ensemble , 1990 .

[7]  H. Maass Über die räumliche Verteilung der Punkte in Gittern mit indefiniter Metrik , 1959 .

[8]  R. Aurich,et al.  Statistical properties of highly excited quantum eigenstates of a strongly chaotic system , 1993 .

[9]  P. Sarnak,et al.  Number variance for arithmetic hyperbolic surfaces , 1994 .

[10]  S. Helgason Groups and geometric analysis , 1984 .

[11]  P. Sarnak,et al.  $L^\infty$ norms of eigenfunctions of arithmetic surfaces , 1995 .

[12]  M. Eichler,et al.  Lectures on modular correspondences , 1955 .

[13]  J. Cassels,et al.  Rational Quadratic Forms , 1978 .

[14]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[15]  T. Shintani On construction of holomorphic cusp forms of half integral weight , 1975, Nagoya Mathematical Journal.

[16]  David Burton Elementary Number Theory , 1976 .

[17]  Steve Zelditch,et al.  Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .