Spectral matching approaches in hyperspectral image processing

Many spectral matching algorithms, ranging from the traditional clustering techniques to the recent automated matching models, have evolved. This paper provides a review and up-to-date information on the past and current role of the spectral matching approaches adopted in hyperspectral satellite image processing. The need for spectral matching has been deliberated and a list of spectral matching algorithms has been compared and described. A review of the conventional spectral angle measures and the advanced automated spectral matching tools indicates that, for better performance of target detection, there is a need for combining two or more spectral matching techniques. From the studies of several authors, it is inferred that continuous improvement in the matching techniques over the past few years is due to the need to handle and analyse hyperspectral image data for various applications. The need to develop a well-built and specialized spectral library to accommodate the resources from enormous spectral data is suggested. This may improve accuracy in mineral and soil mapping, vegetation species identification and health monitoring, and target detection. The future role of cloud computing in accessing globally distributed spectral libraries and performing spectral matching is highlighted. Rather than inferring that a particular matching algorithm is the best, this paper points out the requirements of an ideal algorithm. With increasing usage of hyperspectral data for resources mapping, the review presented in this paper will certainly benefit the large and emerging community of hyperspectral image users.

[1]  J. N. Sweet,et al.  An evaluation of atmospheric correction techniques using the spectral similarity scale , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[2]  Rafael Wiemker,et al.  Surface orientation invariant matching of spectral signatures , 1994, Other Conferences.

[3]  Sangeeta Khare,et al.  Comparative Assessment of Some Target Detection Algorithms for Hyperspectral Images , 2013 .

[4]  F. Meer Spectral curve shape matching with a continuum removed CCSM algorithm , 2000 .

[5]  Chein-I Chang,et al.  An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis , 2000, IEEE Trans. Inf. Theory.

[6]  K. V. Ramana,et al.  A new hybrid spectral similarity measure for discrimination among Vigna species , 2011, 1509.05767.

[7]  Roger N. Clark SPECtrum Processing Routines User's Manual Version 3 (program SPECPR) , 1993 .

[8]  P. Hostert,et al.  ANALYSIS OF VIEW-ANGLE EFFECTS IN HYPERSPECTRAL DATA OF URBAN AREAS , 2005 .

[9]  A. Senthil Kumar,et al.  Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[10]  Robert A. Leathers,et al.  Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: A comparative spectral classification approach , 2003 .

[11]  D. Scott,et al.  Optimization and testing of mass spectral library search algorithms for compound identification , 1994, Journal of the American Society for Mass Spectrometry.

[12]  Qian Du,et al.  Hidden Markov model approach to spectral analysis for hyperspectral imagery , 2001 .

[13]  Uwe Soergel,et al.  A new binary encoding algorithm for the simultaneous region-based classification of hyperspectral data and digital surface models , 2011 .

[14]  K. Staenz,et al.  Processing/analysis capabilities for data acquired with hyperspectral spaceborne sensors , 1996 .

[15]  J. Gower Properties of Euclidean and non-Euclidean distance matrices , 1985 .

[16]  Yi-Zeng Liang,et al.  Fingerprinting Analysis of Raw Herb: Application of Chemometrics Techniques for Finding out Chemical Fingerprint of Chinese Herb , 2001 .

[17]  P. Reinartz,et al.  SPECTRAL MATCHING THROUGH DATA COMPRESSION , 2012 .

[18]  Randall B. Smith,et al.  Locally Adaptive Constrained Energy Minimization for AVIRIS Images , 1999 .

[19]  Wim Bakker,et al.  CCSM: Cross correlogram spectral matching , 1997 .

[20]  M. Govender,et al.  A review of hyperspectral remote sensing and its application in vegetation and water resource studies , 2009 .

[21]  Barbara A. Rasaiah,et al.  Critical Metadata Protocols in Hyperspectral Field Campaigns for Building Robust Hyperspectral Datasets , 2012 .

[22]  S. Ustin,et al.  Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. , 2009, Journal of Environmental Management.

[23]  Jin Chen,et al.  Generalization of Subpixel Analysis for Hyperspectral Data With Flexibility in Spectral Similarity Measures , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[24]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[25]  Xiya Zhang,et al.  Lithological mapping from hyperspectral data by improved use of spectral angle mapper , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[26]  Felix Hueber,et al.  Hyperspectral Imaging Techniques For Spectral Detection And Classification , 2016 .

[27]  Tao Bai,et al.  A new approach to a coding and retrieval system for infrared spectral data: The `Effective Peaks Matching' method , 2000 .

[28]  Erzsébet Merényi,et al.  Automated labeling of segmented hyperspectral imagery via spectral matching , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[29]  Raphael A. Viscarra Rossel,et al.  The Soil Spectroscopy Group and the Development of a Global Soil Spectral Library , 2009 .

[30]  R. Ehsani,et al.  SPECTRAL ANGLE MAPPER (SAM) BASED CITRUS GREENING DISEASE DETECTION USING AIRBORNE HYPERSPECTRAL IMAGING , 2012 .

[31]  P. R. Meneses,et al.  Spectral Correlation Mapper ( SCM ) : An Improvement on the Spectral Angle Mapper ( SAM ) , 2000 .

[32]  Rama Rao Nidamanuri,et al.  A method for selecting optimal spectral resolution and comparison metric for material mapping by spectral library search , 2010 .

[33]  Janja Avbelj,et al.  SPECTRAL INFORMATION RETRIEVAL FOR SUB-PIXEL BUILDING EDGE DETECTION , 2012 .

[34]  J. Clevers,et al.  Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data , 2004 .

[35]  Rama Rao Nidamanuri,et al.  A spectral matching quality indicator for material mapping using spectral library search methods , 2011 .

[36]  Rhae Sung Kim,et al.  Spectral Matching using Bitmap Indices of Spectral Derivatives for the Analysis of Hyperspectral Imagery , 2011 .

[37]  Wesley J Moses,et al.  Improving the retrieval of water inherent optical properties in noisy hyperspectral data through statistical modeling. , 2013, Optics express.

[38]  P. Lucey,et al.  Radiative transfer modeling of near‐infrared reflectance of lunar highland and mare soils , 2010 .

[39]  D. Brynn Hibbert,et al.  Matching fluorescence spectra of oil spills with spectra from suspect sources , 2004 .

[40]  Rama Rao Nidamanuri,et al.  Normalized Spectral Similarity Score ( ${\hbox{NS}}^{3}$) as an Efficient Spectral Library Searching Method for Hyperspectral Image Classification , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[41]  Liangpei Zhang,et al.  Artificial DNA Computing-Based Spectral Encoding and Matching Algorithm for Hyperspectral Remote Sensing Data , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[42]  John A. Richards,et al.  Binary coding of imaging spectrometer data for fast spectral matching and classification , 1993 .

[43]  J.G.B. Leenaars,et al.  Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset) , 2012 .

[44]  A. Gershman,et al.  Spectral matching accuracy in processing hyperspectral data , 2005, International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005..

[45]  P. Debba,et al.  Evaluation of discrimination measures to characterize spectrally similar leaves of African Savannah trees , 2009 .

[46]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[47]  RASAIAH Barbara,et al.  THE ROLE OF HYPERSPECTRAL METADATA IN HYPERSPECTRAL DATA EXCHANGE AND WAREHOUSING , 2011 .

[48]  Nichole L. King,et al.  Development and validation of a spectral library searching method for peptide identification from MS/MS , 2007, Proteomics.

[49]  S. Sanjeevi,et al.  Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[50]  Trijntje Valerie Downes,et al.  Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. , 2005, Applied optics.

[51]  Timothy A. Warner,et al.  The SAGE Handbook of Remote Sensing , 2009 .

[52]  F. Meer The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery , 2006 .

[53]  Peijun Du,et al.  A Web-based open-source database for the distribution of hyperspectral signatures , 2006, Geoinformatics.

[54]  Donald R. Scott,et al.  Effects of binary encoding on pattern recognition and library matching of spectral data , 1988 .

[55]  Daniel Schläpfer,et al.  SPECCHIO: a spectrum database for remote sensing applications , 2003 .

[56]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[57]  Rama Rao Nidamanuri,et al.  Spectral material mapping using hyperspectral imagery: a review of spectral matching and library search methods , 2013 .

[58]  D. Brynn Hibbert,et al.  A comparative study of point-to-point algorithms for matching spectra , 2006 .

[59]  Ibrahim F. Imam,et al.  A novel approach for measuring hyperspectral similarity , 2012, Appl. Soft Comput..

[60]  Yang Yu,et al.  Bathymetry Retrieval From Hyperspectral Remote Sensing Data in Optical-Shallow Water , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Jeffrey S. Morris,et al.  Improved peak detection and quantification of mass spectrometry data acquired from surface‐enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform , 2005, Proteomics.

[62]  P. Thenkabail,et al.  Spectral Matching Techniques to Determine Historical Land-use/Land-cover (LULC) and Irrigated Areas Using Time-series 0.1-degree AVHRR Pathfinder Datasets , 2007 .

[63]  Ramakrishnan Desikan,et al.  Relevance of transformation techniques in rapid endmember identification and spectral unmixing: A hypespectral remote sensing perspective , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[64]  J. Farifteh,et al.  Similarity measures for spectral discrimination of salt‐affected soils , 2007 .

[65]  A. S. Manjunath,et al.  Fast searching of spectral library database using variable interval spectral average method , 2006, SPIE Asia-Pacific Remote Sensing.

[66]  Ilia Parshakov Automatic class labeling of classified imagery using a hyperspectral library , 2012 .

[67]  Adrian J. Brown Spectral curve fitting for automatic hyperspectral data analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[68]  K. S. Rajan,et al.  TEMPORAL SIGNATURE MATCHING FOR LAND COVER CLASSIFICATION , 2010 .

[69]  Margaret E. Gardner,et al.  Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2400 nm , 2004 .

[70]  Won Suk Lee,et al.  ‘Extended spectral angle mapping (ESAM)’ for citrus greening disease detection using airborne hyperspectral imaging , 2014, Precision Agriculture.

[71]  Erzsébet Merényi,et al.  Automated Labeling of Materials in Hyperspectral Imagery , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[72]  Karamjit Bhatia,et al.  Development of Digital Spectral Library and Supervised Classification of Rice Crop Varieties Using Hyperspectral Image Processing , 2012 .

[73]  Chein-I. Chang,et al.  New Hyperspectral Discrimination Measure for Spectral Characterization , 2004 .

[74]  Frederic Nikitin,et al.  QuickMod: A tool for open modification spectrum library searches. , 2011, Journal of proteome research.

[75]  M. M. Daswani Mineral Spectra Extraction and Analysis of the Surface Mineralogy of Mars with Hyperspectral Remote Sensing , 2011 .

[76]  Liangfu Chen,et al.  A Web-based Spectrum Library for Remote Sensing Applications of Poyang Lake Wetland , 2007, Ann. GIS.

[77]  J. Leenaars Africa Soil Profiles Database, Version 1.1. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project. , 2013 .

[78]  Saeid Homayouni,et al.  HYPERSPECTRAL IMAGE ANALYSIS FOR MATERIAL MAPPING USING SPECTRAL MATCHING , 2004 .

[79]  J W Schwarz,et al.  Adaptive Threshold for Spectral Matching of Hyperspectral Data , 2001 .

[80]  Fumin Wang,et al.  Multi range spectral feature fitting for hyperspectral imagery in extracting oilseed rape planting area , 2013, International Journal of Applied Earth Observation and Geoinformation.

[81]  Chein-I. Chang Hyperspectral Imaging: Techniques for Spectral Detection and Classification , 2003 .

[82]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[83]  Helmi Zulhaidi Mohd Shafri,et al.  DEVELOPMENT AND UTILIZATION OF URBAN SPECTRAL LIBRARY FOR REMOTE SENSING OF URBAN ENVIRONMENT , 2011 .

[84]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[85]  Louis L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1999, IEEE Trans. Signal Process..

[86]  Andreoli Giovanni,et al.  Hyperspectral Analysis of Oil and Oil-Impacted Soils for Remote Sensing Purposes , 2007 .

[87]  S. Osher,et al.  Template matching via $l_1$ minimization and its application to hyperspectral data , 2011 .

[88]  George,et al.  REMOTE SENSING AND IMAGE ANALYSIS FOR OIL SPILL MITIGATION IN THE RED SEA , 2000 .

[89]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[90]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[91]  J. Smedsgaard,et al.  A new matching algorithm for high resolution mass spectra , 2004, Journal of the American Society for Mass Spectrometry.

[92]  Robert L. Fischer,et al.  Spectral signatures database for remote sensing applications , 2002, SPIE Optics + Photonics.