Combined fluorescence and ultrastructural mapping of living cells

The topographic analysis of fluorescence distribution has been carried out pixel-by-pixel by one dimensional, two-dimensional microspectrofluorometry and three-dimensional confocal fluorescence microscopy. Fluorescence emission spectra of NAD(P)H and benzo(a)pyrene (or metabolites) were recorded at different excitation wavelengths. Cell bioenergetics are monitored in normal and malignant cells as well as cells with genetic defects by coenzyme responses to microinjections of substrates and modifiers from key metabolic pathways in presence and absence of inhibitors and drugs active on mitochondrial structure and function. Cooperative interactions between organelles involved in detoxification mechanisms are observed in cells treated with fluorescent cytotoxic agents. Such interactions can be directly mapped by the fluorescence of cytotoxic agents, their reaction products or vital probes such as NBD ceramide for the Golgi apparatus. To identify the organelles involved parallel electron microscopic studies are carried out in cells first treated with the cytotoxic agent and then incubated with an electron opaque material. A recently developed combined X-ray laser microscope (COXRALM) holds the promise of carrying out combined phase-fluorescence-and X-ray microscopic observations of fluorescence and ultrastructural correlations in live cell probing. As further versatility is gained in such methods it may become possible to obtain a very detailed structure and function mapping of living cells within the context of cytomatrix analysis, metabolic compartmentation and organelle interactions.