Aspectual Type and Temporal Relation Classification

In this paper we investigate the relevance of aspectual type for the problem of temporal information processing, i.e. the problems of the recent TempEval challenges. For a large list of verbs, we obtain several indicators about their lexical aspect by querying the web for expressions where these verbs occur in contexts associated with specific aspectual types. We then proceed to extend existing solutions for the problem of temporal information processing with the information extracted this way. The improved performance of the resulting models shows that (i) aspectual type can be data-mined with unsupervised methods with a level of noise that does not prevent this information from being useful and that (ii) temporal information processing can profit from information about aspectual type.

[1]  Ellen Riloff,et al.  Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs , 2008, ACL.

[2]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[3]  Zeno Vendler,et al.  Verbs and Times , 1957, The Language of Time - A Reader.

[4]  Georgiana Puscasu WVALI: Temporal Relation Identification by Syntactico-Semantic Analysis , 2007, SemEval@ACL.

[5]  Henriëtte de Swart,et al.  Tense , aspect and coercion in a cross-linguistic perspective , 2000 .

[6]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[7]  Patrick Pantel,et al.  VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations , 2004, EMNLP.

[8]  James Pustejovsky,et al.  The TempEval challenge: identifying temporal relations in text , 2009, Lang. Resour. Evaluation.

[9]  António Branco,et al.  TimeBankPT: A TimeML Annotated Corpus of Portuguese , 2012, LREC.

[10]  M. Hepple,et al.  SemEval-2007 Task 15: TempEval Temporal Relation Identification , 2007, *SEMEVAL.

[11]  Amália Mendes,et al.  Open Resources and Tools for the Shallow Processing of Portuguese: The TagShare Project , 2006, LREC.

[12]  James Pustejovsky,et al.  TimeML: Robust Specification of Event and Temporal Expressions in Text , 2003, New Directions in Question Answering.

[13]  Kathleen McKeown,et al.  Learning Methods to Combine Linguistic Indicators:Improving Aspectual Classification and Revealing Linguistic Insights , 2000, CL.

[14]  Faculdade De Ciências,et al.  Processing Temporal Information in Unstructured Documents , 2012 .

[15]  GRAEME D. RITCHIE,et al.  TEMPORAL CLAUSES IN ENGLISH , 1979 .

[16]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[17]  J. Silva Shallow processing of portuguese: from sentence chunking to nominal lemmatization , 2007 .

[18]  Robert J. Gaizauskas,et al.  USFD: Preliminary Exploration of Features and Classifiers for the TempEval-2007 Task , 2007, SemEval@ACL.

[19]  António Branco,et al.  Temporal Information Processing of a New Language: Fast Porting with Minimal Resources , 2010, ACL.

[20]  Eduard H. Hovy,et al.  Learning surface text patterns for a Question Answering System , 2002, ACL.

[21]  John G. Cleary,et al.  K*: An Instance-based Learner Using and Entropic Distance Measure , 1995, ICML.

[22]  David R. Dowty,et al.  Word Meaning and Montague Grammar , 1979 .

[23]  Munirathnam Srikanth,et al.  LCC-TE: A Hybrid Approach to Temporal Relation Identification in News Text , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[24]  Munirathnam Srikanth,et al.  LCC-TE: A Hybrid Approach to Temporal Relation Identification in News Text , 2007, *SEMEVAL.

[25]  S Carlota,et al.  Dowty, David. 1979. Word Meaning and Montague Grammar: The Semantics of Verbs and Times in Generative Semantics and in Montague's PTQ. Dordrecht: Reidel. , 2005 .

[26]  James C. Lester,et al.  NCSU: Modeling Temporal Relations with Markov Logic and Lexical Ontology , 2010, *SEMEVAL.

[27]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[28]  Tommaso Caselli,et al.  SemEval-2010 Task 13: TempEval-2 , 2010, *SEMEVAL.

[29]  Mark Steedman,et al.  Temporal Ontology and Temporal Reference , 1988, CL.

[30]  Doug Downey,et al.  Web-scale information extraction in knowitall: (preliminary results) , 2004, WWW '04.

[31]  James Pustejovsky,et al.  SemEval-2007 Task 15: TempEval Temporal Relation Identification , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[32]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[33]  Henriëtte de Swart,et al.  Aspect shift and coercion , 1998 .

[34]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[35]  Gemma Boleda,et al.  Automatic acquisition of syntactic verb classes with basic resources , 2005, Lang. Resour. Evaluation.

[36]  Pedro Martins,et al.  LX-Center: a center of online linguistic services , 2009, ACL.