Cartesian stiffness matrix of manipulators with passive joints: Analytical approach

The paper focuses on stiffness matrix computation for manipulators with passive joints. It proposes both explicit analytical expressions and an efficient recursive procedure that are applicable in general case and allow obtaining the desired matrix either in analytical or numerical form. Advantages of the developed technique and its ability to produce both singular and non-singular stiffness matrices are illustrated by application examples that deal with stiffness modeling of two Stewart-Gough platforms.

[1]  Joseph James Duffy,et al.  Stiffness mappings employing different frames of reference , 1998 .

[2]  Richard M. Voyles,et al.  Stiffness analysis of a class of parallel mechanisms for micro-positioning applications , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[3]  Qingsong Xu,et al.  Stiffness analysis for a 3-PUU parallel kinematic machine , 2008 .

[4]  Placid Mathew Ferreira,et al.  Computation of stiffness and stiffness bounds for parallel link manipulators 1 This research was sup , 1999 .

[5]  Bijan Shirinzadeh,et al.  Enhanced stiffness modeling, identification and characterization for robot manipulators , 2005, IEEE Transactions on Robotics.

[6]  Liping Wang,et al.  Stiffness analysis of a Stewart platform-based parallel kinematic machine , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[7]  Dominique Deblaise,et al.  A systematic analytical method for PKM stiffness matrix calculation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[8]  G. Gogu,et al.  A COMPARATIVE STIFNESS ANALYSIS OF A RECONFIGURABLE PARALLEL MACHINE WITH THREE OR FOUR DEGREES OF MOBILITY , 2006 .

[9]  Jean-Pierre Merlet,et al.  Analysis of Wire Elasticity for Wire-driven Parallel Robots , 2009 .

[10]  G. Gogu,et al.  Rigidity analysis of T3R1 parallel robot with uncoupled kinematics , 2004 .

[11]  Xiaohong Jia,et al.  Finite Element Analysis of a Six-Component Force Sensor for the Trans-Femoral Prosthesis , 2007, HCI.

[12]  François Pierrot,et al.  A Method for Modeling Analytical Stiffness of a Lower Mobility Parallel Manipulator , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[13]  Clément Gosselin,et al.  Parametric Stiffness Analysis of the Orthoglide , 2004, ArXiv.

[14]  Imin Kao,et al.  Geometrical approach to the conservative congruence transformation (CCT) for robotic stiffness control , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[15]  Clément Gosselin,et al.  Stiffness Matrix of Compliant Parallel Mechanisms , 2008 .

[16]  Damien Chablat,et al.  Accuracy Improvement for Stiffness Modeling of Parallel Manipulators , 2009, ArXiv.

[17]  J. Angeles,et al.  The stiffness matrix in elastically articulated rigid-body systems , 2007 .

[18]  Vincenzo Parenti-Castelli,et al.  Static and Stiffness Analyses of a Class of Over-Constrained Parallel Manipulators with Legs of Type US and UPS , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[19]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[20]  Dan Zhang,et al.  Analysis of parallel kinematic machine with kinetostatic modelling method , 2004 .

[21]  O Company,et al.  Modelling and preliminary design issues of a four-axis parallel machine for heavy parts handling , 2002 .

[22]  W. Cleghorn,et al.  Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links , 2005 .

[23]  Masaru Uchiyama,et al.  On the stiffness and stability of Gough-Stewart platforms , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[24]  Clément Gosselin,et al.  Instantaneous Kinemato-Static Model of Planar Compliant Parallel Mechanisms , 2008 .

[25]  Damien Chablat,et al.  Stiffness Analysis of Overconstrained Parallel Manipulators , 2009, ArXiv.

[26]  Harold Clifford Martin,et al.  Introduction to Matrix Methods of Structural Analysis , 1966 .

[27]  J. Salisbury,et al.  Active stiffness control of a manipulator in cartesian coordinates , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[28]  Byung-Ju Yi,et al.  Geometric analysis of antagonistic stiffness in redundantly actuated parallel mechanisms , 1993, J. Field Robotics.

[29]  Clément Gosselin,et al.  Stiffness mapping for parallel manipulators , 1990, IEEE Trans. Robotics Autom..

[30]  K. Nagai,et al.  A systematic approach to stiffness analysis of parallel mechanisms and its comparison with FEM , 2007, SICE Annual Conference 2007.

[31]  Clément Gosselin,et al.  Parallel Mechanisms and Robots , 2008, Springer Handbook of Robotics.

[32]  Imin Kao,et al.  Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers , 2000, Int. J. Robotics Res..

[33]  M. Ceccarelli,et al.  A stiffness analysis for CaPaMan (Cassino Parallel Manipulator) , 2002 .

[34]  Ilya Tyapin,et al.  Kinematic and Elastostatic Design Optimisation of the 3-DOF Gantry-Tau Parallel Kinematic Manipulator , 2009 .

[35]  Vijay R. Kumar,et al.  On the 6 × 6 cartesian stiffness matrix for three-dimensional motions , 1998 .

[36]  Nathaniel E. Helwig,et al.  An Introduction to Linear Algebra , 2006 .

[37]  J. Chen,et al.  Instantaneous stiffness analysis and simulation for hexapod machines , 2008, Simul. Model. Pract. Theory.

[38]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[39]  李幼升,et al.  Ph , 1989 .

[40]  Joseph Duffy,et al.  Global stiffness modeling of a class of simple compliant couplings , 1993 .

[41]  Thomas Bonnemains,et al.  Definition of a new static model of Parallel Kinematic Machines: Highlighting of overconstraint influence , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.