Ln 3 MBi 5 (Ln=Pr, Nd, Sm; M=Zr, Hf): Intermetallics with Hypervalent Bismuth Chains
暂无分享,去创建一个
[1] N. Ong,et al. A Class of Magnetic Topological Material Candidates with Hypervalent Bi Chains. , 2022, Journal of the American Chemical Society.
[2] L. Schoop,et al. Chemical bonds in topological materials , 2021 .
[3] L. Schoop,et al. The role of delocalized chemical bonding in square-net-based topological semimetals. , 2020, Journal of the American Chemical Society.
[4] D. Graf,et al. Extreme magnetic field-boosted superconductivity , 2019, Nature Physics.
[5] L. Schoop,et al. Topological Semimetals in Square-Net Materials , 2018, Annual Review of Materials Research.
[6] B. Lotsch,et al. Chemical Principles of Topological Semimetals , 2018, 1804.10649.
[7] Yan Sun,et al. Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe , 2017, Science Advances.
[8] T. Mutou,et al. Magnetic properties of new antiferromagnetic heavy-fermion compounds, Ce 3 TiBi 5 and CeTi 3 Bi 4 , 2017 .
[9] P. Guo,et al. Magneto-transport and electronic structures of BaZnBi2 , 2017, 1708.06531.
[10] Takafumi D. Yamamoto,et al. Hypervalent Bismuthides La3MBi5 (M = Ti, Zr, Hf) and Related Antimonides: Absence of Superconductivity. , 2017, Inorganic chemistry.
[11] B. Lotsch,et al. Structural Stability Diagram of ALnP2S6 Compounds (A = Na, K, Rb, Cs; Ln = Lanthanide). , 2017, Inorganic chemistry.
[12] B. Lotsch,et al. Non-symmorphic band degeneracy at the Fermi level in ZrSiTe , 2016, 1612.06382.
[13] A. Vishwanath,et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2 , 2015, Nature.
[14] Q. Gibson,et al. Gold-gold bonding: the key to stabilizing the 19-electron ternary phases LnAuSb (Ln = La-Nd and Sm). , 2015, Journal of the American Chemical Society.
[15] Q. Gibson,et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.
[16] R. Nesper. The Zintl-Klemm Concept – A Historical Survey† , 2014 .
[17] Z. J. Wang,et al. A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.
[18] Lilia S. Xie,et al. Pressure-induced structural phase transition in the half-Heusler compound CaAuBi , 2014 .
[19] Z. J. Wang,et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.
[20] Haijun Zhang,et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.
[21] Eric S. Toberer,et al. Zintl Chemistry for Designing High Efficiency Thermoelectric Materials , 2010 .
[22] R. Pöttgen,et al. A 121Sb and 151Eu Mössbauer Spectroscopic Investigation of EuMn2Sb2, EuZn2Sb2, YbMn2Sb2, and YbZn2Sb2 , 2010 .
[23] M. Kanatzidis,et al. Highly efficient and rapid Cs+ uptake by the layered metal sulfide K(2x)Mn(x)Sn(3-x)S(6) (KMS-1). , 2009, Journal of the American Chemical Society.
[24] A. Mar,et al. Ternary Rare-Earth Manganese Bismuthides: Structures and Physical Properties of RE3MnBi5 (RE = La−Nd) and Sm2Mn3Bi6 , 2008 .
[25] A. Mar,et al. Anisotropic transport and magnetic properties of ternary uranium antimonides U3ScSb5 and U3TiSb5 , 2006 .
[26] Zhong‐Ming Sun,et al. Synthesis and crystal structures of La3MgBi5 and LaLiBi2 , 2006 .
[27] A. Mar,et al. Physical Properties and Bonding in RE3TiSb5 (RE = La, Ce, Pr, Nd, Sm) , 2002 .
[28] A. Mar,et al. New Ternary Rare-Earth Transition-Metal Antimonides RE3MSb5 (RE = La, Ce, Pr, Nd, Sm; M = Ti, Zr, Hf, Nb) , 1995 .
[29] W. Jeitschko,et al. U3TiSb5, U3VSb5, U3CrSb5, and U3MnSb5 with "Anti"-Hf5Sn3Cu Type Structure , 1994 .
[30] C. Morant,et al. An XPS study of the initial stages of oxidation of hafnium , 1990 .
[31] R. Nesper. Structure and chemical bonding in zintl-phases containing lithium , 1990 .
[32] R. Hoffmann. How Chemistry and Physics Meet in the Solid State , 1987 .
[33] S. Badrinarayanan,et al. Interaction of oxygen with Zr76Fe24 metglass: An X-ray photoelectron spectroscopy study , 1986 .
[34] H. Schäfer,et al. Darstellung und Kristallstruktur von BaMnSb2, SrMnBi2 und BaMnBi2 / Preparation and Crystal Structure of BaMnSb2, SrMnBi2 and BaMnBi2 , 1977 .
[35] W. Morgan,et al. Inner-orbital binding-energy shifts of antimony and bismuth compounds , 1973 .
[36] R. E. Rundle. On the Problem Structure of XeF4 and XeF2 , 1963 .
[37] G. Pimentel. The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method , 1951 .