Ln 3 MBi 5 (Ln=Pr, Nd, Sm; M=Zr, Hf): Intermetallics with Hypervalent Bismuth Chains

[1]  N. Ong,et al.  A Class of Magnetic Topological Material Candidates with Hypervalent Bi Chains. , 2022, Journal of the American Chemical Society.

[2]  L. Schoop,et al.  Chemical bonds in topological materials , 2021 .

[3]  L. Schoop,et al.  The role of delocalized chemical bonding in square-net-based topological semimetals. , 2020, Journal of the American Chemical Society.

[4]  D. Graf,et al.  Extreme magnetic field-boosted superconductivity , 2019, Nature Physics.

[5]  L. Schoop,et al.  Topological Semimetals in Square-Net Materials , 2018, Annual Review of Materials Research.

[6]  B. Lotsch,et al.  Chemical Principles of Topological Semimetals , 2018, 1804.10649.

[7]  Yan Sun,et al.  Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe , 2017, Science Advances.

[8]  T. Mutou,et al.  Magnetic properties of new antiferromagnetic heavy-fermion compounds, Ce 3 TiBi 5 and CeTi 3 Bi 4 , 2017 .

[9]  P. Guo,et al.  Magneto-transport and electronic structures of BaZnBi2 , 2017, 1708.06531.

[10]  Takafumi D. Yamamoto,et al.  Hypervalent Bismuthides La3MBi5 (M = Ti, Zr, Hf) and Related Antimonides: Absence of Superconductivity. , 2017, Inorganic chemistry.

[11]  B. Lotsch,et al.  Structural Stability Diagram of ALnP2S6 Compounds (A = Na, K, Rb, Cs; Ln = Lanthanide). , 2017, Inorganic chemistry.

[12]  B. Lotsch,et al.  Non-symmorphic band degeneracy at the Fermi level in ZrSiTe , 2016, 1612.06382.

[13]  A. Vishwanath,et al.  Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2 , 2015, Nature.

[14]  Q. Gibson,et al.  Gold-gold bonding: the key to stabilizing the 19-electron ternary phases LnAuSb (Ln = La-Nd and Sm). , 2015, Journal of the American Chemical Society.

[15]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[16]  R. Nesper The Zintl-Klemm Concept – A Historical Survey† , 2014 .

[17]  Z. J. Wang,et al.  A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.

[18]  Lilia S. Xie,et al.  Pressure-induced structural phase transition in the half-Heusler compound CaAuBi , 2014 .

[19]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[20]  Haijun Zhang,et al.  Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.

[21]  Eric S. Toberer,et al.  Zintl Chemistry for Designing High Efficiency Thermoelectric Materials , 2010 .

[22]  R. Pöttgen,et al.  A 121Sb and 151Eu Mössbauer Spectroscopic Investigation of EuMn2Sb2, EuZn2Sb2, YbMn2Sb2, and YbZn2Sb2 , 2010 .

[23]  M. Kanatzidis,et al.  Highly efficient and rapid Cs+ uptake by the layered metal sulfide K(2x)Mn(x)Sn(3-x)S(6) (KMS-1). , 2009, Journal of the American Chemical Society.

[24]  A. Mar,et al.  Ternary Rare-Earth Manganese Bismuthides: Structures and Physical Properties of RE3MnBi5 (RE = La−Nd) and Sm2Mn3Bi6 , 2008 .

[25]  A. Mar,et al.  Anisotropic transport and magnetic properties of ternary uranium antimonides U3ScSb5 and U3TiSb5 , 2006 .

[26]  Zhong‐Ming Sun,et al.  Synthesis and crystal structures of La3MgBi5 and LaLiBi2 , 2006 .

[27]  A. Mar,et al.  Physical Properties and Bonding in RE3TiSb5 (RE = La, Ce, Pr, Nd, Sm) , 2002 .

[28]  A. Mar,et al.  New Ternary Rare-Earth Transition-Metal Antimonides RE3MSb5 (RE = La, Ce, Pr, Nd, Sm; M = Ti, Zr, Hf, Nb) , 1995 .

[29]  W. Jeitschko,et al.  U3TiSb5, U3VSb5, U3CrSb5, and U3MnSb5 with "Anti"-Hf5Sn3Cu Type Structure , 1994 .

[30]  C. Morant,et al.  An XPS study of the initial stages of oxidation of hafnium , 1990 .

[31]  R. Nesper Structure and chemical bonding in zintl-phases containing lithium , 1990 .

[32]  R. Hoffmann How Chemistry and Physics Meet in the Solid State , 1987 .

[33]  S. Badrinarayanan,et al.  Interaction of oxygen with Zr76Fe24 metglass: An X-ray photoelectron spectroscopy study , 1986 .

[34]  H. Schäfer,et al.  Darstellung und Kristallstruktur von BaMnSb2, SrMnBi2 und BaMnBi2 / Preparation and Crystal Structure of BaMnSb2, SrMnBi2 and BaMnBi2 , 1977 .

[35]  W. Morgan,et al.  Inner-orbital binding-energy shifts of antimony and bismuth compounds , 1973 .

[36]  R. E. Rundle On the Problem Structure of XeF4 and XeF2 , 1963 .

[37]  G. Pimentel The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method , 1951 .