A stabilised immersed boundary method on hierarchical b-spline grids

Abstract In this work, an immersed boundary finite element method is proposed which is based on a hierarchically refined cartesian b-spline grid and employs the non-symmetric and penalty-free version of Nitsche’s method to enforce the boundary conditions. The strategy allows for h - and p -refinement and employs a so-called ghost penalty term to stabilise the cut cells. An effective procedure based on hierarchical subdivision and sub-cell merging, which avoids excessive numbers of quadrature points, is used for the integration of the cut cells. A basic Laplace problem is used to demonstrate the effectiveness of the cut cell stabilisation and of the penalty-free Nitsche method as well as their impact on accuracy. The methodology is also applied to the incompressible Navier–Stokes equations, where the SUPG/PSPG stabilisation is employed. Simulations of the lid-driven cavity flow and the flow around a cylinder at low Reynolds number show the good performance of the methodology. Excessive ill-conditioning of the system matrix is robustly avoided without jeopardising the accuracy at the immersed boundaries or in the field.

[1]  Jeffrey W. Banks,et al.  An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids , 2014, J. Comput. Phys..

[2]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[3]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[4]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[5]  Lucy T. Zhang Immersed finite element method for fluid-structure interactions , 2007 .

[6]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[7]  Fehmi Cirak,et al.  Immersed b-spline (i-spline) finite element method for geometrically complex domains , 2011 .

[8]  D. Weaver Flow-induced vibration , 2014 .

[9]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[10]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .

[11]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[12]  Isaac Harari,et al.  A robust Nitsche's formulation for interface problems with spline‐based finite elements , 2015 .

[13]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[14]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[15]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[16]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[17]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[18]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[19]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[20]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[21]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[22]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[23]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[24]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[25]  Fehmi Cirak,et al.  Subdivision-stabilised immersed b-spline finite elements for moving boundary flows , 2012 .

[26]  Erik Burman,et al.  A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity , 2014, 1407.2229.

[27]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[28]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[29]  Chennakesava Kadapa,et al.  A fictitious domain/distributed Lagrange multiplier based fluid–structure interaction scheme with hierarchical B-Spline grids , 2016 .

[30]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[31]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[32]  Rolf Stenberg,et al.  On weakly imposed boundary conditions for second order problems , 1995 .

[33]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[34]  Adarsh Krishnamurthy,et al.  Direct immersogeometric fluid flow analysis using B-rep CAD models , 2016, Comput. Aided Geom. Des..

[35]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[36]  Boo Cheong Khoo,et al.  An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries , 2006, J. Comput. Phys..

[37]  D. Peric,et al.  A computational framework for free surface fluid flows accounting for surface tension , 2006 .

[38]  Stein K. F. Stoter,et al.  The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements , 2016 .

[39]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[40]  Wulf G. Dettmer,et al.  A new staggered scheme for fluid–structure interaction , 2013 .

[41]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[42]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[43]  D. Perić,et al.  A Fully Implicit Computational Strategy for Strongly Coupled Fluid–Solid Interaction , 2007 .

[44]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[45]  Ulrich Reif,et al.  Weighted Extended B-Spline Approximation of Dirichlet Problems , 2001, SIAM J. Numer. Anal..

[46]  R. L. Taylor Isogeometric analysis of nearly incompressible solids , 2011 .

[47]  Erik Burman,et al.  Explicit strategies for incompressible fluid‐structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling , 2014 .

[48]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[49]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[50]  Hans-Joachim Bungartz,et al.  Fluid-structure interaction : modelling, simulation, optimisation , 2006 .

[51]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[52]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[53]  D. Peric,et al.  Subdivision based mixed methods for isogeometric analysis of linear and nonlinear nearly incompressible materials , 2016 .

[54]  K. Höllig Finite element methods with B-splines , 1987 .

[55]  Wulf G. Dettmer,et al.  An adaptive remeshing strategy for flows with moving boundaries and fluid–structure interaction , 2007 .

[56]  Spencer J. Sherwin,et al.  A numerical study of rotational and transverse galloping rectangular bodies , 2003 .

[57]  Hans-Joachim Bungartz,et al.  Fluid Structure Interaction II: Modelling, Simulation, Optimization , 2010 .

[58]  Fehmi Cirak,et al.  A fixed‐grid b‐spline finite element technique for fluid–structure interaction , 2014 .

[59]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[60]  F. de Prenter,et al.  Condition number analysis and preconditioning of the finite cell method , 2016, 1601.05129.

[61]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[62]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[63]  Z. J. Wang,et al.  A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow , 2003 .

[64]  Ming-Chen Hsu,et al.  The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries , 2016 .

[65]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[66]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[67]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[68]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[69]  Rajeev K. Jaiman,et al.  A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow , 2016 .

[70]  Ming-Chen Hsu,et al.  The tetrahedral finite cell method: Higher‐order immersogeometric analysis on adaptive non‐boundary‐fitted meshes , 2016 .

[71]  M. Braza,et al.  Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder , 1986, Journal of Fluid Mechanics.

[72]  Erik Burman,et al.  A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Imposition of Boundary Conditions , 2011, SIAM J. Numer. Anal..

[73]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[74]  D. Calhoun A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-Vorticity Equations in Irregular Regions , 2002 .

[75]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[76]  Thomas J. R. Hughes,et al.  What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .

[77]  Alexandre Ern,et al.  Continuous Interior Penalty hp-Finite Element Methods for Transport Operators , 2006 .

[78]  Jeffrey W. Banks,et al.  An analysis of a new stable partitioned algorithm for FSI problems. Part II: Incompressible flow and structural shells , 2014, J. Comput. Phys..

[79]  F. Brezzi,et al.  Stability of higher-order Hood-Taylor methods , 1991 .

[80]  Tomas Bengtsson,et al.  Fictitious domain methods using cut elements : III . A stabilized Nitsche method for Stokes ’ problem , 2012 .

[81]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[82]  Tayfun E. Tezduyar,et al.  Stabilization Parameters in SUPG and PSPG Formulations , 2003 .

[83]  Chaoqun Liu,et al.  Preconditioned Multigrid Methods for Unsteady Incompressible Flows , 1997 .

[84]  Jacques Periaux,et al.  A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of par , 1998 .

[85]  Antonio J. Gil,et al.  The Immersed Structural Potential Method for haemodynamic applications , 2010, J. Comput. Phys..

[86]  Wulf G. Dettmer,et al.  An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation , 2003 .

[87]  Tayfun E. Tezduyar,et al.  Space–Time method for flow computations with slip interfaces and topology changes (ST-SI-TC) , 2016 .

[88]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[89]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[90]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[91]  H. Fasel,et al.  A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains , 2005 .

[92]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.