Evolution of rogue waves in dusty plasmas

The evolution of rogue waves associated with the dynamics of positively charged dust grains that interact with streaming electrons and ions is investigated. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrodinger equation (NLSE). The rational solution of the NLSE is presented, which proposed as an effective tool for studying the rogue waves in Jupiter. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming densities of the ions and electrons. Furthermore, the supersonic rogue waves are much taller than the subsonic rogue waves by ∼25 times.

[1]  R. Sabry Freak waves in Saturn’s magnetosphere , 2015 .

[2]  W. Moslem,et al.  Nonlinear structures of the Korteweg-de Vries and modified Korteweg-de Vries equations in non-Maxwellian electron-positron-ion plasma: Solitons collision and rogue waves , 2014 .

[3]  G. P. Veldes,et al.  Electromagnetic rogue waves in beam–plasma interactions , 2013 .

[4]  S. K. Sharma,et al.  Observation of hole Peregrine soliton in a multicomponent plasma with critical density of negative ions , 2013 .

[5]  U. M. Abdelsalam Solitary and freak waves in superthermal plasma with ion jet , 2012, Journal of Plasma Physics.

[6]  R. Sabry,et al.  Amplitude modulation of hydromagnetic waves and associated rogue waves in magnetoplasmas. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  P. Shukla,et al.  Solar wind interactions with the dusty magnetosphere of Jupiter produce shocks and solitons associated with nonlinear drift waves , 2012 .

[8]  P. Shukla,et al.  Alfvénic rogue waves , 2012 .

[9]  S. El-Labany,et al.  Interaction of ion beam with dust grains produces dust-acoustic solitary waves in Herbig-Haro objects , 2012 .

[10]  N. A. El-Bedwehy,et al.  Nonplanar dust ion-acoustic solitary and shock excitations in electronegative plasmas with trapped electrons , 2012 .

[11]  Y. Nakamura,et al.  Observation of Peregrine solitons in a multicomponent plasma with negative ions. , 2011, Physical review letters.

[12]  S. El-Labany,et al.  Dust-acoustic rogue waves in a nonextensive plasma. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  P. Shukla,et al.  Surface plasma rogue waves , 2011 .

[14]  H. Saleem Erratum: “Solar wind interaction with the stationary dust can produce drift waves to form nonlinear structures” [Phys. Plasmas 13, 012903 (2006)] , 2011 .

[15]  W. Moslem,et al.  Langmuir rogue waves in electron-positron plasmas , 2011 .

[16]  Frédéric Dias,et al.  The Peregrine soliton in nonlinear fibre optics , 2010 .

[17]  R. Sabry,et al.  Electrostatic structures associated with dusty electronegative magnetoplasmas , 2010 .

[18]  M. Djebli,et al.  Arbitrary amplitude ion-acoustic waves in a plasma with nonthermal electrons , 2010 .

[19]  M. Wadati,et al.  Finite amplitude solitary excitations in rotating magnetized nonthermal complex (dusty) plasmas , 2010 .

[20]  M. Shats,et al.  Capillary rogue waves. , 2010, Physical review letters.

[21]  P. Shukla,et al.  Numerical investigation of the instability and nonlinear evolution of narrow-band directional ocean waves. , 2009, Physical review letters.

[22]  L. Stenflo,et al.  Rogue waves in the atmosphere , 2009, Journal of Plasma Physics.

[23]  F. Arecchi,et al.  Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. , 2009, Physical review letters.

[24]  V. Konotop,et al.  Matter rogue waves , 2009 .

[25]  J. Soto-Crespo,et al.  Rogue waves and rational solutions of the nonlinear Schrödinger equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  R. Sabry,et al.  Propagation of the three-dimensional dust acoustic solitons in magnetized quantum plasmas with dust polarity effect , 2009 .

[27]  P. McClintock,et al.  Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. , 2008, Physical review letters.

[28]  N. A. El-Bedwehy,et al.  Effect of second ion temperature on modulation stability of dust-acoustic solitary waves with dust charge variation , 2007 .

[29]  H. Saleem Solar wind interaction with the stationary dust can produce drift waves to form nonlinear structures , 2006 .

[30]  S. Jones,et al.  On the effective measurement frequency of TDR in dispersive and non-conductive dielectric materials , 2005 .

[31]  S. El-Labany,et al.  Dust acoustic solitary waves and double layers in a dusty plasma with an arbitrary streaming ion beam , 2003 .

[32]  R. Roychoudhury,et al.  Pseudopotential approach to nonlinear dust acoustic waves in dusty plasma , 2002 .

[33]  S. El-Labany,et al.  Higher-Order Contributions to Dust-Acoustic Waves in a Magnetized Dusty Plasmas , 2002 .

[34]  Y. Nejoh Nonlinear dynamics of the dust grain charge and dust acoustic waves in a plasma with an ion beam , 1999 .

[35]  D. A. Mendis,et al.  COSMIC DUSTY PLASMA , 1994 .

[36]  P. Shukla,et al.  Dust ion-acoustic wave , 1992 .

[37]  N. N. Rao,et al.  DUST -ACOUSTIC WAVES IN DUSTY PLASMAS , 1990 .

[38]  C. Goertz,et al.  Dusty plasmas in the solar system , 1989 .

[39]  M. Horányi,et al.  Trajectories of charged dust grains in the cometary environment , 1985 .

[40]  H. Washimi,et al.  ON THE PROPAGATION OF ION ACOUSTIC SOLITARY WAVES OF SMALL AMPLITUDE. , 1966 .