Diffusive Dynamics in a Detailed Potential: Application to Biological Macromolecules

Abstract The local dynamics of macromolecules is obtained to second-order in the mode-coupling expansion of the Smoluchowski diffusion theory. The NMR spin-lattice relaxation times of different 13C or 15N nuclei along the chains are calculated and compared to experimental data from the literature. The macromolecules are considered as fluctuating 3D structures undergoing rotational diffusion. The fluctuations can be evaluated with any technique for sampling the configurational space. In the presented test cases Molecular Dynamics simulations have been applied to a DNA fragment and to the NK-2 homeodomain. In the case of the double-stranded DNA fragment d(TpCpGpCpG)2, second and even first order theories are found to be in close agreement with experimental results. The major advantage of the diffusion technique is that only a good statistics is important as input while the solvent dynamic effects enter through hydrodynamic theory. Application based on Hybrid Monte Carlo schemes coupled with J-walking, are now in progress.

[1]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[2]  J. Ferretti,et al.  Smoluchowski dynamics of the vnd/NK-2 homeodomain from Drosophila melanogaster: first-order mode-coupling approximation. , 1999, Biopolymers.

[3]  G. Grest,et al.  Dynamics of linear and branched alkane melts: Molecular dynamics test of theory for long time dynamics , 1998 .

[4]  B. Berne,et al.  Smart walking: A new method for Boltzmann sampling of protein conformations , 1997 .

[5]  Piero Procacci,et al.  ORAC: A Molecular dynamics program to simulate complex molecular systems with realistic electrostatic interactions , 1997 .

[6]  A. Perico,et al.  Maximum-Correlation Mode-Coupling Approach to the Smoluchowski Dynamics of Polymers , 1997 .

[7]  N. Thuong,et al.  Selectively 13C‐Enriched DNA: Dynamics of the C1′H1′ and C5′H5′ or C5′H5″ Vectors in d(CGCAAATTTGCG)2 , 1997 .

[8]  G. Lancelot,et al.  Internal dynamics of d(CGCAAATTTGCG)2: a comparison of NMR relaxation measurements with a molecular dynamics simulation , 1997, European Biophysics Journal.

[9]  K. Freed,et al.  Mode coupling theory for calculating the memory functions of flexible chain molecules: Influence on the long time dynamics of oligoglycines , 1997 .

[10]  Piero Procacci,et al.  A Very Fast Molecular Dynamics Method To Simulate Biomolecular Systems with Realistic Electrostatic Interactions , 1996 .

[11]  K. Freed,et al.  Theory for long time polymer and protein dynamics: Basis functions and time correlation functions , 1995 .

[12]  K. Freed,et al.  Extended molecular dynamics and optimized Rouse–Zimm model studies of a short peptide: Various friction approximations , 1995 .

[13]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[14]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[15]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[16]  A. Perico,et al.  Protein dynamics: Rotational diffusion of rigid and fluctuating three dimensional structures , 1995 .

[17]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[18]  K. Freed,et al.  Torsional time correlation function for one‐dimensional systems with barrier crossing: Periodic potential , 1994 .

[19]  G. C. Levy,et al.  13C-NMR relaxation in three DNA oligonucleotide duplexes: model-free analysis of internal and overall motion. , 1994, Biochemistry.

[20]  K. Freed,et al.  Test of theory for long time dynamics of floppy molecules in solution using Brownian dynamics simulation of octane , 1993 .

[21]  K. Freed,et al.  Effect of various frictional models on long‐time peptide dynamics , 1993 .

[22]  Anderson Coser Gaudio,et al.  Calculation of Molecular Surface Area with Numerical Factors , 1992, Comput. Chem..

[23]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[24]  Y. Hu,et al.  Theory of long time peptide dynamics: Test of various reduced descriptions and role of internal variables , 1991 .

[25]  A. Perico Segmental relaxation in macromolecules , 1989 .

[26]  M. Karplus,et al.  Parametrization of the friction constant for stochastic simulations of polymers , 1988 .

[27]  A. Kennedy,et al.  Hybrid Monte Carlo , 1987 .

[28]  A. Perico,et al.  Viscoelastic relaxation of segment orientation in dilute polymer solutions , 1985 .

[29]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[30]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[31]  A. Szabó,et al.  Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity , 1982 .

[32]  Robert Zwanzig,et al.  Optimized Rouse–Zimm theory for stiff polymers , 1978 .

[33]  A. Perico,et al.  Dynamics of chain molecules. I. Solutions to the hydrodynamic equation and intrinsic viscosity , 1975 .

[34]  J. T. Edward,et al.  Molecular Volumes and the Stokes-Einstein Equation. , 1970 .

[35]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[36]  L. Favro,et al.  Theory of the Rotational Brownian Motion of a Free Rigid Body , 1960 .

[37]  M. E. Rose,et al.  Elementary Theory of Angular Momentum , 1957 .

[38]  G. Penna,et al.  Mode-Coupling Smoluchowski Dynamics of Polymers in the Limit of Rigid Structures , 1999 .

[39]  K. Freed,et al.  Positional time correlation function for one‐dimensional systems with barrier crossing: Memory function corrections to the optimized Rouse–Zimm approximation , 1993 .

[40]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .