Regional Geophysics and Structural Framework of the Vancouver Island Margin Accretionary Prism

Ocean Drilling Program (ODP) Leg 146 was directed at aspects of two related problems: (1) the role of sediment consolidation and fluid expulsion in the development of subduction zone accretionary prisms and (2) the nature and origin of bottom-simulating reflectors (BSR) interpreted to be generated by high-velocity methane hydrate and underlying low-velocity free gas. The portion of the leg assigned to drilling off Vancouver Island addressed diffuse fluid expulsion from the prism not associated with obvious faults or other structures, and the structure and composition of the hydrate. The two objectives are related through the possibility that fluid expulsion is required for the formation of the hydrate that forms BSRs. This article describes the regional geological framework and tectonics of the northern Cascadia Margin at Vancouver Island, presents regional survey data in the area of the ODP sites, and summarizes the scientific studies that led to the drilling objectives. An extensive reference list is given to assist the reader in obtaining more detailed information.

[1]  Timothy A. Minshull,et al.  Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion , 1994 .

[2]  R. Hyndman,et al.  Seismic velocities and inferred porosities in the accretionary wedge sediments at the Cascadia margin , 1994 .

[3]  Kelin Wang,et al.  Tectonic sediment thickening, fluid expulsion, and the thermal regime of subduction zone accretionary prisms: The Cascadia Margin off Vancouver Island , 1993 .

[4]  R. Hyndman,et al.  Queen Charlotte Area Cenozoic tectonics and volcanism and their association with relative plate motions along the northeastern Pacific Margin , 1993 .

[5]  Kelin Wang,et al.  Thermal effects of sediment thickening and fluid expulsion in accretionary prisms: Model and parameter analysis , 1993 .

[6]  T. Minshull,et al.  Velocity Structure of a Gas Hydrate Reflector , 1993, Science.

[7]  G. Thomas,et al.  Heat flow and thermal models of the Barbados Ridge Accretionary Complex , 1993 .

[8]  Kelin Wang,et al.  Thermal constraints on the zone of major thrust earthquake failure: The Cascadia Subduction Zone , 1993 .

[9]  T. Lewis,et al.  Crustal temperatures near the Lithoprobe Southern Canadian Cordillera Transect , 1992 .

[10]  R. Hyndman,et al.  A seismic study of methane hydrate marine bottom simulating reflectors , 1992 .

[11]  Earl E. Davis,et al.  A mechanism for the formation of methane hydrate and seafloor bottom‐simulating reflectors by vertical fluid expulsion , 1992 .

[12]  M. Yamano,et al.  Deep sea bottom-simulating-reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates * , 1992 .

[13]  M. E. Mackay,et al.  Landward vergence and oblique structural trends in the Oregon margin accretionary prism: Implications and effect on fluid flow , 1992 .

[14]  B. Bekins,et al.  A simplified analysis of parameters controlling dewatering in accretionary prisms , 1992 .

[15]  R. Huene,et al.  OBSERVATIONS AT CONVERGENT MARGINS CONCERNING SEDIMENT SUBDUCTION, SUBDUCTION EROSION, AND THE GROWTH , 1991 .

[16]  G. Westbrook Geophysical evidence for the role of fluids in accretionary wedge tectonics , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[17]  D. Blackwell,et al.  Heat flow in the state of washington and thermal conditions in the Cascade Range , 1990 .

[18]  X. Pichon,et al.  water flow in the Barbados Accretionary Complex , 1990 .

[19]  G. Westbrook,et al.  Seismic velocities from the Barbados Ridge Complex: Indicators of high pore fluid pressures in an accretionary complex , 1990 .

[20]  H. Villinger,et al.  Rates of fluid expulsion across the Northern Cascadia Accretionary Prism: Constraints from new heat row and multichannel seismic reflection data , 1990 .

[21]  G. MacDonald Role of methane clathrates in past and future climates , 1990 .

[22]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[23]  R. Hyndman,et al.  The northern Cascadia subduction zone at Vancouver Island: seismic structure and tectonic history , 1990 .

[24]  Mike Warner,et al.  Absolute reflection coefficients from deep Seismic reflections , 1990 .

[25]  M. Langseth,et al.  Fluids in accretionary prisms , 1990 .

[26]  R. Hyndman,et al.  Accretion and recent deformation of sediments along the northern Cascadia subduction zone , 1989 .

[27]  S. Carbotte,et al.  Geological and geophysical characteristics of the Tuzo Wilson Seamounts: implications for plate geometry in the vicinity of the Pacific – North America – Explorer triple junction , 1989 .

[28]  Robert S. White,et al.  Sediment compaction and fluid migration in the Makran Accretionary Prism , 1989 .

[29]  Douglas S. Wilson,et al.  Deformation of the so‐called Gorda Plate , 1989 .

[30]  K. Kvenvolden Methane hydrate — A major reservoir of carbon in the shallow geosphere? , 1988 .

[31]  E. E. Davis,et al.  Subduction of the Juan de Fuca Plate: Thermal consequences , 1988 .

[32]  P. Molnar,et al.  Uncertainties and implications of the Late Cretaceous and Tertiary position of North America relative to the Farallon, Kula, and Pacific Plates , 1988 .

[33]  Douglas S. Wilson,et al.  Tectonic history of the Juan de Fuca Ridge over the last 40 million years , 1988 .

[34]  G. Cochrane,et al.  Structure and subduction processes along the Oregon-Washington margin , 1988 .

[35]  Yaolin Shi,et al.  Generation of high pore pressures in accretionary prisms: Inferences from the Barbados Subduction Complex , 1988 .

[36]  F. Pollitz Episodic North America and Pacific Plate motions , 1988 .

[37]  T. J. Owens,et al.  Slab geometry of the Cascadia Subduction Zone beneath Washington from earthquake hypocenters and tel , 1987 .

[38]  R. Hyndman,et al.  Reflection mapping across the convergent margin of western Canada , 1987 .

[39]  E. Davis,et al.  On the cause of the asymmetric distribution of seamounts about the Juan de Fuca ridge: ridge-crest migration over a heterogeneous asthenosphere , 1986 .

[40]  N. Massey Metchosin Igneous Complex, southern Vancouver Island: Ophiolite stratigraphy developed in an emergent island setting , 1986 .

[41]  Allan Cox,et al.  Relative Motions Between Oceanic and Continental Plates in the Pacific Basin , 1986 .

[42]  R. Clowes,et al.  Seismic structure across the active subduction zone of western Canada , 1985 .

[43]  T. McDonald,et al.  Gas Hydrates of the Middle America TrenchDeep Sea Drilling Project Leg 84 , 1985 .

[44]  D. Karig,et al.  Porosity of sediments in accretionary prisms and some implications for dewatering processes , 1985 .

[45]  W. Murphy Acoustic measures of partial gas saturation in tight sandstones , 1984 .

[46]  Richard N. Hey,et al.  Pole of rotation analysis of present-day Juan de Fuca Plate motion , 1984 .

[47]  S. Y. Johnson Evidence for a margin-truncating transcurrent fault (pre-late Eocene) in western Washington , 1984 .

[48]  W. Ostrander Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence , 1984 .

[49]  R. Riddihough Recent movements of the Juan de Fuca Plate System , 1984 .

[50]  R. Coe,et al.  Cenozoic plate motions and the volcano-tectonic evolution of western Oregon and Washington , 1984 .

[51]  A. Cox,et al.  Correlation of plate motions with continental tectonics: Laramide to basin‐range , 1984 .

[52]  M. Yamano,et al.  Estimates of heat flow derived from gas hydrates , 1982 .

[53]  C. Yorath The Apollo structure in Tofino Basin, Canadian Pacific continental shelf , 1980 .

[54]  Thomas H. Shipley,et al.  Seismic Evidence for Widespread Possible Gas Hydrate Horizons on Continental Slopes and Rises , 1979 .

[55]  R. Hyndman,et al.  The Nootka Fault Zone — a new plate boundary off western Canada , 1979 .

[56]  R. Hyndman,et al.  Geophysical review of the continental margins of eastern and western Canada , 1979 .

[57]  R. Riddihough Gravity and structure of an active margin—British Columbia and Washington , 1979 .

[58]  B. Carson,et al.  Tectonically induced deformation of deep-sea sediments off Washington and northern Oregon: Mechanical consolidation , 1977 .

[59]  N. Macleod,et al.  Geologic interpretation of magnetic and gravity anomalies in the Strait of Juan de Fuca, U.S.–Canada , 1977 .

[60]  S. N. Domenico,et al.  Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir. [Laboratory velocity measurements in unconsolidated sand at various brine saturations] , 1976 .

[61]  B. Carson,et al.  Initial Deep-Sea Sediment Deformation at the Base of the Washington Continental Slope: A Response to Subduction , 1974 .

[62]  J. Murray,et al.  Tectonics and Depositional History of the Continental Margin Off Vancouver Island, British Columbia , 1972 .

[63]  T. Atwater Implications of Plate Tectonics for the Cenozoic Tectonic Evolution of Western North America , 1970 .

[64]  K. Moran 17. VELOCITY, POROSITY, AND PORE-FLUID LOSS FROM THE NANKAI SUBDUCTION ZONE ACCRETIONARY PRISM1 , 1993 .

[65]  R. Hyndman,et al.  Multichannel Seismic Reflection Profiles Across the Vancouver Island Continental Shelf and Slope , 1991 .

[66]  R. Hyndman,et al.  Chapter 13: Modern Plate Tectonic Regime of the Continental Margin of western Canada , 1991 .

[67]  E. Nisbet The end of the ice age , 1990 .

[68]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[69]  T. Atwater Plate tectonic history of the northeast Pacific and western North America , 1989 .

[70]  D. Seemann,et al.  Marine multichannel seismic reflection, gravity and magnetic profiles, Vancouver Island, continental margin and Juan de Fuca Ridge , 1987 .

[71]  C. Yorath Petroleum Geology of the Canadian Pacific Continental Margin , 1987 .

[72]  J. P. D. Snavely Tertiary Geologic Framework, Neotectonics, and Petroleum Potential of the Oregon-Washington Continental Margin , 1987 .

[73]  Earl E. Davis,et al.  The use of swath bathymetric and acoustic image mapping tools in marine geoscience , 1986 .

[74]  D. Seemann,et al.  A compilation of seismic reflection profiles across the continental margin of western Canada , 1981 .

[75]  W. M. Cady,et al.  The structure of the Olympic Mountains, Washington; analysis of a subduction zone , 1978 .

[76]  George E. Claypool,et al.  The Origin and Distribution of Methane in Marine Sediments , 1974 .

[77]  R. McIver Hydrocarbon Gas (Methane) in Canned Deep Sea Drilling Project Core Samples , 1974 .

[78]  D. H. Shouldice Western Canadian Continental Shelf , 1973 .

[79]  D. H. Shouldice Abstract: Geology of the Western Canadian Continental Shelf , 1972 .