Characterizing Imaging Data

Imaging represents a frequent, non-invasive, longitudinal, in vivo sampling technique for acquiring objective insight into normal and disease phenomenon. Imaging is increasingly used to document complex patient conditions, for diagnostic purposes as well as for assessment of therapeutic interventions (e.g., drug, surgery, radiation therapy) [81]. Imaging can capture structural, compositional, and functional information across multiple scales of evidence, including manifestations of disease processes at the molecular, genetic, cellular, tissue, and organ level [47]. Imaging allows both global assessment of disease extent as well as the characterization of disease micro-environments. Advances in imaging during the past decade have provided an unparalleled view into the human body; and in all likelihood these advances will continue in the foreseeable future. There has been considerable research directed to developing imaging biomarkers, defined as, “…anatomic, physiologic, biochemical, or molecular parameters detectable with imaging methods used to establish the presence or severity of disease which offers the prospect of improved early medical product development and preclinical testing” [188]. Yet the full utility of image data is not realized, with prevailing interpretation methods that almost entirely rely on conventional subjective interpretation of images. Quantitative methods to extract the underlying tissue specific parameters that change with pathology will provide a better understanding of pathological processes. The interdisciplinary field of imaging informatics addresses many issues that have prevented the systematic, scientific understanding of radiological evidence and the creation of comprehensive diagnostic models from which the most plausible explanation can be considered for decision making tasks.

[1]  P. Rüegsegger,et al.  Peripheral QCT: a low-risk procedure to identify women predisposed to osteoporosis. , 1989, Physics in medicine and biology.

[2]  Usha S. Sinha,et al.  Denoising diffusion tensor images: preprocessing for automated detection of subtle diffusion tensor abnormalities between populations , 2006, SPIE Medical Imaging.

[3]  Timothy D. Solberg,et al.  Radiation dose in Spiral CT: The relative effects of collimation and pitch , 1999 .

[4]  Toshihiro Kumabe,et al.  Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. , 2006, Radiology.

[5]  Jie Yang,et al.  Degree prediction of malignancy in brain glioma using support vector machines , 2006, Comput. Biol. Medicine.

[6]  Savita Gupta,et al.  Image Denoising Using Wavelet Thresholding , 2002, ICVGIP.

[7]  A F Laine,et al.  Quantification of myocardial perfusion in human subjects using 82Rb and wavelet-based noise reduction. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  E. Pedroni,et al.  The calibration of CT Hounsfield units for radiotherapy treatment planning. , 1996, Physics in medicine and biology.

[9]  Bjarne K. Ersbøll,et al.  FAME-a flexible appearance modeling environment , 2003, IEEE Transactions on Medical Imaging.

[10]  M. Fox,et al.  Fractal feature analysis and classification in medical imaging. , 1989, IEEE transactions on medical imaging.

[11]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[12]  R Haux,et al.  Medical Imaging Informatics and Medical Informatics: Opportunities and Constraints , 2002, Methods of Information in Medicine.

[13]  Yunmei Chen,et al.  DT-MRI denoising and neuronal fiber tracking , 2004, Medical Image Anal..

[14]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[15]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[16]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[17]  Long Zhu,et al.  Unsupervised Learning of a Probabilistic Grammar for Object Detection and Parsing , 2006, NIPS.

[18]  Azriel Rosenfeld,et al.  Picture Processing and Psychopictorics , 1970 .

[19]  Hans Henrik Thodberg,et al.  Minimum Description Length Shape and Appearance Models , 2003, IPMI.

[20]  P. Hunter,et al.  Integration from proteins to organs: the Physiome Project , 2003, Nature Reviews Molecular Cell Biology.

[21]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[22]  René M. Botnar,et al.  Coronary magnetic resonance angiography for the detection of coronary stenoses. , 2001, The New England journal of medicine.

[23]  C. Cann,et al.  Quantitative CT for determination of bone mineral density: a review. , 1988, Radiology.

[24]  Alejandro F. Frangi,et al.  Active shape model segmentation with optimal features , 2002, IEEE Transactions on Medical Imaging.

[25]  Andrew F. Laine,et al.  Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing , 1998, IEEE Transactions on Medical Imaging.

[26]  I. Jolliffe Principal Component Analysis , 2002 .

[27]  B. Rutt,et al.  Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state , 2003, Magnetic resonance in medicine.

[28]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[29]  Kristin R. Swanson,et al.  Dynamics of a model for brain tumors reveals a small window for therapeutic intervention , 2003 .

[30]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[31]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[32]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications , 1949 .

[33]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[34]  I K Fodor,et al.  A Survey of Dimension Reduction Techniques , 2002 .

[35]  J C Mazziotta,et al.  Automated image registration: II. Intersubject validation of linear and nonlinear models. , 1998, Journal of computer assisted tomography.

[36]  Djemel Ziou,et al.  Edge Detection Techniques-An Overview , 1998 .

[37]  J C Ehrhardt,et al.  MR data acquisition and reconstruction using efficient sampling schemes. , 1990, IEEE transactions on medical imaging.

[38]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[39]  Tien-Tsin Wong,et al.  Volumetric Ultrasound Panorama Based on 3D SIFT , 2008, MICCAI.

[40]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[41]  William H. Press,et al.  Numerical recipes in C , 2002 .

[42]  Paul M. Thompson,et al.  What is where and why it is important , 2007, NeuroImage.

[43]  Li Yang,et al.  Distance-Preserving Projection of High-Dimensional Data for Nonlinear Dimensionality Reduction , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[45]  Geoffrey G. Zhang,et al.  Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method. , 2004, Physics in medicine and biology.

[46]  Edmund J. Crampin,et al.  Computational biology of cardiac myocytes: proposed standards for the physiome , 2007, Journal of Experimental Biology.

[47]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[48]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[49]  N. Papadakis,et al.  Minimal gradient encoding for robust estimation of diffusion anisotropy. , 2000, Magnetic resonance imaging.

[50]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[51]  M. Brady,et al.  Automatic classification of mammographic parenchymal patterns: a statistical approach , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[52]  J. Todd Book Review: Digital image processing (second edition). By R. C. Gonzalez and P. Wintz, Addison-Wesley, 1987. 503 pp. Price: £29.95. (ISBN 0-201-11026-1) , 1988 .

[53]  Usha Sinha,et al.  In vivo diffusion tensor imaging of human calf muscle , 2002, Journal of magnetic resonance imaging : JMRI.

[54]  A. Toga,et al.  Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. , 1997, Journal of computer assisted tomography.

[55]  Joe Y. Chang,et al.  Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy , 2005, Physics in medicine and biology.

[56]  Charles A Mistretta,et al.  Noise reduction in MR angiography with nonlinear anisotropic filtering , 2004, Journal of magnetic resonance imaging : JMRI.

[57]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[58]  R. Guillevin,et al.  Simulation of anisotropic growth of low‐grade gliomas using diffusion tensor imaging , 2005, Magnetic resonance in medicine.

[59]  Rafael C. González,et al.  Digital image processing, 3rd Edition , 2008 .

[60]  Lucila Ohno-Machado,et al.  Supratentorial low-grade glioma resectability: statistical predictive analysis based on anatomic MR features and tumor characteristics. , 2006, Radiology.

[61]  Hiroshi Motoda,et al.  Computational Methods of Feature Selection , 2022 .

[62]  Jacob Scharcanski,et al.  Adaptive image denoising using scale and space consistency , 2002, IEEE Trans. Image Process..

[63]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Yung-Chang Chen,et al.  Ultrasonic Liver Tissues Classification by Fractal Feature Vector Based on M-band Wavelet Transform , 2001, IEEE Trans. Medical Imaging.

[65]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[66]  Tony F. Chan,et al.  Total Variation Regularization of Matrix-Valued Images , 2007, Int. J. Biomed. Imaging.

[67]  Y. Chen,et al.  Image registration via level-set motion: Applications to atlas-based segmentation , 2003, Medical Image Anal..

[68]  Paul S Mischel,et al.  MR imaging correlates of survival in patients with high-grade gliomas. , 2005, AJNR. American journal of neuroradiology.

[69]  M. Thelen,et al.  Tissue characterization with T1, T2, and proton density values: results in 160 patients with brain tumors. , 1988, Radiology.

[70]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Leonid P. Yaroslavsky,et al.  Digital Picture Processing , 1985 .

[72]  Karl J. Friston,et al.  Correlation between structural and functional changes in brain in an idiopathic headache syndrome , 1999, Nature Medicine.

[73]  Eldad Haber,et al.  A Multilevel Method for Image Registration , 2005, SIAM J. Sci. Comput..

[74]  James H Thrall,et al.  Biomarkers in imaging: realizing radiology's future. , 2003, Radiology.

[75]  Max A. Viergever,et al.  Ridge-based vessel segmentation in color images of the retina , 2004, IEEE Transactions on Medical Imaging.

[76]  L A DeWerd,et al.  An electron density calibration phantom for CT-based treatment planning computers. , 1992, Medical physics.

[77]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[78]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[79]  J. Thijssen,et al.  Characterization of echographic image texture by cooccurrence matrix parameters. , 1997, Ultrasound in medicine & biology.

[80]  K Doi,et al.  Investigation of basic imaging properties in digital radiography. I. Modulation transfer function. , 1984, Medical physics.

[81]  A. Kalnin,et al.  Correlation between the degree of contrast enhancement and the volume of peritumoral edema in meningiomas and malignant gliomas , 1999, Neuroradiology.

[82]  Dinggang Shen,et al.  Segmenting Lung Fields in Serial Chest Radiographs Using Both Population-Based and Patient-Specific Shape Statistics , 2008, IEEE Transactions on Medical Imaging.

[83]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[84]  M. Berger,et al.  The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. , 1999, Surgical neurology.

[85]  Jayaram K. Udupa,et al.  New variants of a method of MRI scale standardization , 2000, IEEE Transactions on Medical Imaging.

[86]  Karl J. Friston,et al.  Incorporating Prior Knowledge into Image Registration , 1997, NeuroImage.

[87]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[88]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[89]  Siamak Ardekani,et al.  Parametric Brain MR Atlases: Standardization for Imaging Informatics , 2004, MedInfo.

[90]  S J Zinreich,et al.  T2 relaxation measurements in X-linked adrenoleukodystrophy performed using dual-echo fast fluid-attenuated inversion recovery MR imaging. , 2001, AJNR. American journal of neuroradiology.

[91]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[92]  J. Mazziotta,et al.  Automated image registration , 1993 .

[93]  K. Aldape,et al.  Identification of noninvasive imaging surrogates for brain tumor gene-expression modules , 2008, Proceedings of the National Academy of Sciences.

[94]  Nikolas P. Galatsanos,et al.  A similarity learning approach to content-based image retrieval: application to digital mammography , 2004, IEEE Transactions on Medical Imaging.

[95]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[96]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[97]  Shawn Martin,et al.  Estimating manifold dimension by inversion error , 2005, SAC '05.

[98]  Siamak Khorram,et al.  A feature-based image registration algorithm using improved chain-code representation combined with invariant moments , 1999, IEEE Trans. Geosci. Remote. Sens..

[99]  G. Boreman Modulation Transfer Function , 1998 .

[100]  K. Amunts,et al.  Towards multimodal atlases of the human brain , 2006, Nature Reviews Neuroscience.

[101]  M. Yaffe,et al.  Characterisation of mammographic parenchymal pattern by fractal dimension. , 1990, Physics in medicine and biology.

[102]  Keinosuke Fukunaga,et al.  An Algorithm for Finding Intrinsic Dimensionality of Data , 1971, IEEE Transactions on Computers.

[103]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[104]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[105]  N. Ayache,et al.  Multimodal Brain Warping Using the Demons Algorithm and Adaptative Intensity Corrections , 1999 .

[106]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[107]  L. Bozzao,et al.  Supratentorial diffuse astrocytic tumours: proposal of an MRI classification , 1997, European Radiology.

[108]  A. Tannenbaum,et al.  Despeckling of medical ultrasound images , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[109]  Paul M. Thompson,et al.  Mapping the regional influence of genetics on brain structure variability — A Tensor-Based Morphometry study , 2009, NeuroImage.

[110]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[111]  Milan Sonka,et al.  Segmentation and interpretation of MR brain images. An improved active shape model , 1998, IEEE Transactions on Medical Imaging.

[112]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[113]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[114]  Jianbo Shi,et al.  Bottom-Up Recognition and Parsing of the Human Body , 2007, EMMCVPR.

[115]  Francesco Camastra,et al.  Data dimensionality estimation methods: a survey , 2003, Pattern Recognit..

[116]  C E Elger,et al.  A fast FLAIR dual‐echo technique for hippocampal T2 relaxometry: First experiences in patients with temporal lobe epilepsy , 2001, Journal of magnetic resonance imaging : JMRI.

[117]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[118]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[119]  R Haux,et al.  Medical Imaging Informatics. , 2002, Yearbook of medical informatics.

[120]  P. Roland,et al.  Comparison of spatial normalization procedures and their impact on functional maps , 2002, Human brain mapping.

[121]  Zhengrong Liang,et al.  Automatic centerline extraction for virtual colonoscopy , 2002, IEEE Transactions on Medical Imaging.

[122]  Raymond Sawaya,et al.  Cystic glioblastoma multiforme: survival outcomes in 22 cases. , 2004, Journal of neurosurgery.

[123]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[124]  R. C. Murry,et al.  Christensen's physics of diagnostic radiology , 1990 .

[125]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[126]  Jan Sijbers,et al.  Maximum-likelihood estimation of Rician distribution parameters , 1998, IEEE Transactions on Medical Imaging.

[127]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[128]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[129]  Jacques A. de Guise,et al.  A method for modeling noise in medical images , 2004, IEEE Transactions on Medical Imaging.

[130]  T. Makabe,et al.  Assessment of the pathological grade of astrocytic gliomas using an MRI score , 1994, Neuroradiology.

[131]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[132]  Anil K. Jain,et al.  Texture Segmentation Using Voronoi Polygons , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[133]  M J Ackerman,et al.  The Visible Human Project , 1998, Proc. IEEE.

[134]  P. Hunter,et al.  Computational physiology and the physiome project , 2004, Experimental physiology.

[135]  D L Hill,et al.  Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. , 1997, Medical physics.

[136]  Cleare Hm,et al.  An experimental study of the mottle produced by x-ray intensifying screens. , 1962 .

[137]  Dirk Roose,et al.  Wavelet-based image denoising using a Markov random field a priori model , 1997, IEEE Trans. Image Process..

[138]  B M Moores,et al.  Noise transfer in screen-film subtraction radiography. , 1985, Physics in medicine and biology.

[139]  P. Fox,et al.  Spatial normalization origins: Objectives, applications, and alternatives , 1995 .

[140]  Thierry Blu,et al.  Hexagonal versus orthogonal lattices: a new comparison using approximation theory , 2005, IEEE International Conference on Image Processing 2005.

[141]  Shishir Dube An automated system for quantitative hierarchical image analysis of malignant gliomas: Developing robust techniques for integrated segmentation/classification and prognosis of glioblastoma multiforme , 2009 .

[142]  Song-Chun Zhu,et al.  Modeling Visual Patterns by Integrating Descriptive and Generative Methods , 2004, International Journal of Computer Vision.

[143]  R Deichmann,et al.  T1 maps by K-space reduced snapshot-FLASH MRI. , 1992, Journal of computer assisted tomography.

[144]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[145]  Guido Gerig,et al.  A brain tumor segmentation framework based on outlier detection , 2004, Medical Image Anal..

[146]  C R Bird,et al.  Gliomas: classification with MR imaging. , 1990, Radiology.

[147]  Rebecca A Betensky,et al.  Imaging Correlates of Molecular Signatures in Oligodendrogliomas , 2004, Clinical Cancer Research.

[148]  Long Zhu,et al.  Rapid Inference on a Novel AND/OR graph for Object Detection, Segmentation and Parsing , 2007, NIPS.

[149]  John S. Duncan,et al.  Shape-based 4D left ventricular myocardial function analysis , 1994, Proceedings of IEEE Workshop on Biomedical Image Analysis.

[150]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[151]  J Hennig,et al.  T1 quantification with inversion recovery TrueFISP , 2001, Magnetic resonance in medicine.

[152]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[153]  H P Chan,et al.  Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification. , 1996, Medical physics.

[154]  Joachim Dengler,et al.  THE DYNAMIC PYRAMID—A MODEL FOR MOTION ANALYSIS WITH CONTROLLED CONTINUITY , 1988 .

[155]  Gregory S Karczmar,et al.  MRI of the tumor microenvironment , 2002, Journal of magnetic resonance imaging : JMRI.

[156]  Rangaraj M. Rangayyan,et al.  Automatic identification of the pectoral muscle in mammograms , 2004, IEEE Transactions on Medical Imaging.

[157]  José V. Manjón,et al.  MRI denoising using Non-Local Means , 2008, Medical Image Anal..

[158]  X. Pennec,et al.  3D non-rigid registration by gradient descent on a Gaussian-windowed similarity measure using convolutions , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[159]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[160]  J. Baron,et al.  In Vivo Mapping of Gray Matter Loss with Voxel-Based Morphometry in Mild Alzheimer's Disease , 2001, NeuroImage.

[161]  M. Hasegawa,et al.  Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. , 2006, American journal of respiratory and critical care medicine.

[162]  B K Rutt,et al.  A fast 3D look-locker method for volumetric T1 mapping. , 1999, Magnetic resonance imaging.

[163]  Cristian Lorenz,et al.  A comprehensive shape model of the heart , 2006, Medical Image Anal..

[164]  F. H. Attix Introduction to Radiological Physics and Radiation Dosimetry , 1991 .

[165]  R. Mirimanoff,et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma. , 2005, The New England journal of medicine.

[166]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[167]  Pierre Hellier,et al.  Hierarchical estimation of a dense deformation field for 3-D robust registration , 2001, IEEE Transactions on Medical Imaging.

[168]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[169]  Hyeokho Choi,et al.  Shift-invariant denoising using wavelet-domain hidden Markov trees , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[170]  Song-Chun Zhu,et al.  Statistical Modeling and Conceptualization of Visual Patterns , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[171]  Georgy L. Gimel'farb,et al.  Automatic analysis of 3D low dose CT images for early diagnosis of lung cancer , 2009, Pattern Recognit..

[172]  Gordon Clapworthy,et al.  The virtual physiological human: building a framework for computational biomedicine I. Editorial. , 2008, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[173]  Xiangyang Wang,et al.  Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma , 2006, Comput. Methods Programs Biomed..

[174]  Hooshang Kangarloo,et al.  A Customizable MR Brain Imaging Atlas of Structure and Function for Decision Support , 2003, AMIA.

[175]  Rangaraj M. Rangayyan,et al.  Application of shape analysis to mammographic calcifications , 1994, IEEE Trans. Medical Imaging.

[176]  Timothy F. Cootes,et al.  Use of active shape models for locating structures in medical images , 1994, Image Vis. Comput..

[177]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[178]  C A McKenzie,et al.  Fast acquisition of quantitative T2 maps , 1999, Magnetic resonance in medicine.

[179]  Raymond Sawaya,et al.  Prognostic significance of preoperative MRI scans in glioblastoma multiforme , 2004, Journal of Neuro-Oncology.

[180]  Geoffrey McLennan,et al.  Establishing a normative atlas of the human lung: intersubject warping and registration of volumetric CT images. , 2003, Academic radiology.

[181]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[182]  Alan C. Evans,et al.  Searching scale space for activation in PET images , 1996, Human brain mapping.

[183]  Michael F McNitt-Gray,et al.  AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT. , 2002, Radiographics : a review publication of the Radiological Society of North America, Inc.

[184]  Michael Weiner,et al.  Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer's disease, mild cognitive impairment and elderly controls , 2009, NeuroImage.

[185]  Nicholas Ayache,et al.  Frequency-Based Nonrigid Motion Analysis: Application to Four Dimensional Medical Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[186]  Jinah Park,et al.  Deformable models with parameter functions for cardiac motion analysis from tagged MRI data , 1996, IEEE Trans. Medical Imaging.

[187]  Thomas L Toth,et al.  Can noise reduction filters improve low-radiation-dose chest CT images? Pilot study. , 2003, Radiology.

[188]  Robert D. Nowak,et al.  Wavelet-based Rician noise removal for magnetic resonance imaging , 1999, IEEE Trans. Image Process..

[189]  Bram van Ginneken,et al.  Automatic detection of red lesions in digital color fundus photographs , 2005, IEEE Transactions on Medical Imaging.

[190]  Konstantina S. Nikita,et al.  Automatic retinal image registration scheme using global optimization techniques , 1999, IEEE Transactions on Information Technology in Biomedicine.

[191]  Stuart Geman,et al.  Context and Hierarchy in a Probabilistic Image Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[192]  G H Glover,et al.  Aliasing: A Source of Streaks in Computed Tomograms , 1979, Journal of computer assisted tomography.

[193]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[194]  Carol Walker,et al.  Histological growth patterns and genotype in oligodendroglial tumours: correlation with MRI features. , 2006, Brain : a journal of neurology.

[195]  Long Zhu,et al.  A Hierarchical Compositional System for Rapid Object Detection , 2005, NIPS.

[196]  Tracy T Batchelor,et al.  Magnetic Resonance Imaging Characteristics Predict Epidermal Growth Factor Receptor Amplification Status in Glioblastoma , 2005, Clinical Cancer Research.

[197]  J. C. Dainty,et al.  Image Science: Principles, Analysis and Evaluation of Photographic-Type Imaging Processes , 1974 .

[198]  J. Ioannidis Why Most Published Research Findings Are False , 2005, PLoS medicine.

[199]  Dmitry B. Goldgof,et al.  Adaptive-Size Meshes for Rigid and Nonrigid Shape Analysis and Synthesis , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[200]  N. Paragios A level set approach for shape-driven segmentation and tracking of the left ventricle , 2003, IEEE Transactions on Medical Imaging.

[201]  Shigeharu Suzuki,et al.  Meningiomas with brain edema: radiological characteristics on MRI and review of the literature. , 2002, Clinical imaging.

[202]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[203]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[204]  Russell A. Poldrack,et al.  In praise of tedious anatomy , 2007, NeuroImage.

[205]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[206]  Thomas Martin Deserno,et al.  System analysis of x-ray-sensitive CCDs and adaptive restoration of intraoral radiographs , 1996, Medical Imaging.

[207]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[208]  John S. Duncan,et al.  Pointwise tracking of left-ventricular motion in 3D , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[209]  J A Jensen,et al.  A model for the propagation and scattering of ultrasound in tissue. , 1991, The Journal of the Acoustical Society of America.

[210]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[211]  H K Huang,et al.  A fast dual-energy computational method using isotransmission lines and table lookup. , 1987, Medical physics.

[212]  Joachim Hornegger,et al.  Nonrigid Registration of Joint Histograms for Intensity Standardization in Magnetic Resonance Imaging , 2009, IEEE Transactions on Medical Imaging.

[213]  Rangaraj M. Rangayyan,et al.  Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets , 2001, IEEE Transactions on Medical Imaging.

[214]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[215]  L G Nyúl,et al.  Numerical tissue characterization in MS via standardization of the MR image intensity scale , 2000, Journal of magnetic resonance imaging : JMRI.

[216]  H Kangarloo,et al.  A PACS-based interactive teaching module for radiologic sciences. , 1992, AJR. American journal of roentgenology.

[217]  Jacek M. Zurada,et al.  An approach to multimodal biomedical image registration utilizing particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[218]  Jacob Scharcanski,et al.  Denoising and enhancing digital mammographic images for visual screening , 2006, Comput. Medical Imaging Graph..

[219]  Nixon,et al.  Feature Extraction & Image Processing , 2008 .

[220]  J. Murray,et al.  Quantifying Efficacy of Chemotherapy of Brain Tumors with Homogeneous and Heterogeneous Drug Delivery , 2002, Acta biotheoretica.

[221]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[222]  J. Morel,et al.  Variational Methods in Image Segmentation: with seven image processing experiments , 1994 .

[223]  Robert P. W. Duin,et al.  An Evaluation of Intrinsic Dimensionality Estimators , 1995, IEEE Trans. Pattern Anal. Mach. Intell..