Human gene essentiality

A gene can be defined as essential when loss of its function compromises viability of the individual (for example, embryonic lethality) or results in profound loss of fitness. At the population level, identification of essential genes is accomplished by observing intolerance to loss-of-function variants. Several computational methods are available to score gene essentiality, and recent progress has been made in defining essentiality in the non-coding genome. Haploinsufficiency is emerging as a critical aspect of gene essentiality: approximately 3,000 human genes cannot tolerate loss of one of the two alleles. Genes identified as essential in human cell lines or knockout mice may be distinct from those in living humans. Reconciling these discrepancies in how we evaluate gene essentiality has applications in clinical genetics and may offer insights for drug development.

[1]  Tom R. Gaunt,et al.  HIPred: an integrative approach to predicting haploinsufficient genes , 2017, Bioinform..

[2]  Steve D. M. Brown,et al.  High-throughput discovery of novel developmental phenotypes , 2016, Nature.

[3]  Bing Ren,et al.  The human noncoding genome defined by genetic diversity , 2018, Nature Genetics.

[4]  Amalio Telenti,et al.  HIV entry inhibitors , 2007, The Lancet.

[5]  Sharon R Grossman,et al.  Systematic mapping of functional enhancer–promoter connections with CRISPR interference , 2016, Science.

[6]  Bjarni V. Halldórsson,et al.  Large-scale whole-genome sequencing of the Icelandic population , 2015, Nature Genetics.

[7]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[8]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[9]  Pedro G. Ferreira,et al.  Transcriptome and genome sequencing uncovers functional variation in humans , 2013, Nature.

[10]  Marylyn D. Ritchie,et al.  Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study , 2016, Science.

[11]  Steve D. M. Brown,et al.  The mouse ascending: perspectives for human-disease models , 2007, Nature Cell Biology.

[12]  Benjamin F. Voight,et al.  Nature Genetics Advance Online Publication a N a Ly S I S an Expanded Sequence Context Model Broadly Explains Variability in Polymorphism Levels across the Human Genome , 2022 .

[13]  E. Lander,et al.  Identification and characterization of essential genes in the human genome , 2015, Science.

[14]  O. White,et al.  Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.

[15]  Boris Lenhard,et al.  The mystery of extreme non-coding conservation , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  L. Hurst,et al.  Hearing silence: non-neutral evolution at synonymous sites in mammals , 2006, Nature Reviews Genetics.

[17]  C. Tyler-Smith,et al.  Human Knockout Carriers: Dead, Diseased, Healthy, or Improved? , 2016, Trends in molecular medicine.

[18]  T. Jensen,et al.  Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes , 2015, Nature Reviews Molecular Cell Biology.

[19]  G. Superti-Furga,et al.  Gene essentiality and synthetic lethality in haploid human cells , 2015, Science.

[20]  Leif Groop,et al.  LoFtool: a gene intolerance score based on loss‐of‐function variants in 60 706 individuals , 2016, Bioinform..

[21]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[22]  Paul J. McLaren,et al.  The Characteristics of Heterozygous Protein Truncating Variants in the Human Genome , 2015, PLoS Comput. Biol..

[23]  Karin S Kassahn,et al.  Identification of human haploinsufficient genes and their genomic proximity to segmental duplications , 2008, European Journal of Human Genetics.

[24]  P. Stenson,et al.  The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine , 2013, Human Genetics.

[25]  Emily K. Tsang,et al.  Effect of predicted protein-truncating genetic variants on the human transcriptome , 2015, Science.

[26]  Monica J Justice,et al.  Using the mouse to model human disease: increasing validity and reproducibility , 2016, Disease Models & Mechanisms.

[27]  Insuk Lee,et al.  Characterising and Predicting Haploinsufficiency in the Human Genome , 2010, PLoS genetics.

[28]  L. Maquat,et al.  A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. , 1998, Trends in biochemical sciences.

[29]  Levi C. T. Pierce,et al.  Deep Sequencing of 10,000 Human Genomes , 2016, bioRxiv.

[30]  Stefan Wuchty,et al.  Essentiality and centrality in protein interaction networks revisited , 2015, BMC Bioinformatics.

[31]  Hyungwon Choi,et al.  Gene Essentiality Is a Quantitative Property Linked to Cellular Evolvability , 2015, Cell.

[32]  E. Dermitzakis,et al.  Rare and Common Regulatory Variation in Population-Scale Sequenced Human Genomes , 2011, PLoS genetics.

[33]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[34]  M. Bucan,et al.  From Mouse to Human: Evolutionary Genomics Analysis of Human Orthologs of Essential Genes , 2013, PLoS genetics.

[35]  Yan Lin,et al.  DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements , 2013, Nucleic Acids Res..

[36]  S. Lyonnet,et al.  Enhancer mutations and phenotype modularity , 2013, Nature Genetics.

[37]  M. Daly,et al.  Regional missense constraint improves variant deleteriousness prediction , 2017, bioRxiv.

[38]  O. Troyanskaya,et al.  Predicting effects of noncoding variants with deep learning–based sequence model , 2015, Nature Methods.

[39]  J. Buxbaum,et al.  A SPECTRAL APPROACH INTEGRATING FUNCTIONAL GENOMIC ANNOTATIONS FOR CODING AND NONCODING VARIANTS , 2015, Nature Genetics.

[40]  S. Kathiresan Developing medicines that mimic the natural successes of the human genome: lessons from NPC1L1, HMGCR, PCSK9, APOC3, and CETP. , 2015, Journal of the American College of Cardiology.

[41]  Chava Kimchi-Sarfaty,et al.  Exposing synonymous mutations. , 2014, Trends in genetics : TIG.

[42]  G. Howell,et al.  Transgenic rescue of the mouse t complex haplolethal locus Thl1 , 2005, Mammalian Genome.

[43]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[44]  H. Stefánsson,et al.  Identification of a large set of rare complete human knockouts , 2015, Nature Genetics.

[45]  S. Antonarakis,et al.  Pathogenic variants in non‐protein‐coding sequences , 2013, Clinical genetics.

[46]  Giorgio Valentini,et al.  A Whole-Genome Analysis Framework for Effective Identification of Pathogenic Regulatory Variants in Mendelian Disease. , 2016, American journal of human genetics.

[47]  J. B. Oliveira,et al.  Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4 , 2014, Science.

[48]  High-resolution interrogation of functional elements in the noncoding genome , 2016 .

[49]  A. Keech,et al.  Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease , 2017, The New England journal of medicine.

[50]  Sean R. Collins,et al.  Systematic Discovery of Human Gene Function and Principles of Modular Organization through Phylogenetic Profiling. , 2015, Cell reports.

[51]  Harry Hemingway,et al.  Health and population effects of rare gene knockouts in adult humans with related parents , 2015, Science.

[52]  D. Durocher,et al.  High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities , 2015, Cell.

[53]  Jacob F. Degner,et al.  Genetic variants regulating expression levels and isoform diversity during embryogenesis , 2016, Nature.

[54]  Neville E. Sanjana,et al.  CRISPR Screens to Discover Functional Noncoding Elements. , 2016, Trends in genetics : TIG.

[55]  D. Goldstein,et al.  Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes , 2013, PLoS genetics.

[56]  Steve D. M. Brown,et al.  Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project , 2012, Mammalian Genome.

[57]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[58]  Ioannis Xenarios,et al.  Analysis of Stop-Gain and Frameshift Variants in Human Innate Immunity Genes , 2014, bioRxiv.

[59]  A. Barabasi,et al.  Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets , 2015, Proceedings of the National Academy of Sciences.

[60]  David P. Nusinow,et al.  Estimating the Selective Effects of Heterozygous Protein Truncating Variants from Human Exome Data , 2017, Nature Genetics.

[61]  J. Maniloff,et al.  The minimal cell genome: "on being the right size". , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Owen J. L. Rackham,et al.  EvoTol: a protein-sequence based evolutionary intolerance framework for disease-gene prioritization , 2014, Nucleic acids research.

[63]  Ney Lemke,et al.  Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review , 2016, Front. Physiol..

[64]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[65]  Ronald W. Davis,et al.  Mechanisms of Haploinsufficiency Revealed by Genome-Wide Profiling in Yeast , 2005, Genetics.

[66]  Caleb Webber,et al.  Haploinsufficiency predictions without study bias , 2015, Nucleic acids research.

[67]  Zhongzheng Cao,et al.  Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library , 2016, Nature Biotechnology.

[68]  Albert J. Vilella,et al.  A high-resolution map of human evolutionary constraint using 29 mammals , 2011, Nature.

[69]  K. Shianna,et al.  A whole-genome analysis of premature termination codons. , 2011, Genomics.

[70]  Gary D Bader,et al.  The human genome and drug discovery after a decade. Roads (still) not taken , 2011, 1102.0448.

[71]  Corey Nislow,et al.  The Yeast Deletion Collection: A Decade of Functional Genomics , 2014, Genetics.

[72]  A. Ferrús,et al.  The haplolethal region at the 16F gene cluster of Drosophila melanogaster: structure and function. , 1999, Genetics.

[73]  Kathryn E. Hentges,et al.  Defining the Role of Essential Genes in Human Disease , 2011, PloS one.

[74]  Andres Metspalu,et al.  Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population , 2014, PLoS genetics.

[75]  R. Elkon,et al.  Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9 , 2016, Nature Biotechnology.

[76]  Mark Gerstein,et al.  Interpretation of Genomic Variants Using a Unified Biological Network Approach , 2013, PLoS Comput. Biol..

[77]  Joseph K. Pickrell,et al.  A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes , 2012, Science.

[78]  Deanna M. Church,et al.  ClinVar: public archive of relationships among sequence variation and human phenotype , 2013, Nucleic Acids Res..

[79]  Andrew Fraser,et al.  Essential Human Genes. , 2015, Cell systems.

[80]  Alicia R. Martin,et al.  Quantifying the Impact of Rare and Ultra-rare Coding Variation across the Phenotypic Spectrum. , 2018, American journal of human genetics.

[81]  M. Gerstein,et al.  Role of non-coding sequence variants in cancer , 2016, Nature Reviews Genetics.

[82]  J. Lupski,et al.  Non-coding genetic variants in human disease. , 2015, Human molecular genetics.

[83]  Morgan C. Giddings,et al.  Defining functional DNA elements in the human genome , 2014, Proceedings of the National Academy of Sciences.

[84]  Martin Renqiang Min,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[85]  Daniel G. MacArthur,et al.  Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity , 2017, Nature.

[86]  D. G. Gibson,et al.  Design and synthesis of a minimal bacterial genome , 2016, Science.

[87]  P. D. de Bakker,et al.  Negative selection in humans and fruit flies involves synergistic epistasis , 2016, Science.