Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman

Atomically thin molybdenum disulfide (MoS2 )o ffers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayerMoS2intherangeof100� 320Karereportedandanalyzed.Thelinear temperature coefficients of the in-plane E2g 1 and the out-of-plane A1g modes for both suspended and substrate-supported monolayer MoS2 are measured. These data,whencombinedwiththe first-ordercoefficientsfromlaserpower-dependent studies, enable the thermal conductivity to be extracted. The resulting thermal conductivity κ=(34.5(4)W/mKatroomtemperatureagreeswellwiththe first- principles lattice dynamics simulations. However, this value is significantly lower than that of graphene. The results from this work provide important input for the design of MoS2-based devices where thermal management is critical.

[1]  Yanlong Wang,et al.  Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. , 2013, Small.

[2]  Jean-Christophe Charlier,et al.  Identification of individual and few layers of WS2 using Raman Spectroscopy , 2013, Scientific Reports.

[3]  W. Haensch,et al.  Comparative study of chemically synthesized and exfoliated multilayer MoS2 field-effect transistors , 2013, 1301.4527.

[4]  Gang Chen,et al.  Nanoscale heat transfer--from computation to experiment. , 2013, Physical chemistry chemical physics : PCCP.

[5]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[6]  D. Jena,et al.  Raman and Photoluminescence Study of Dielectric and Thermal Effects on Atomically Thin MoS2 , 2012, 1211.4136.

[7]  B. Chakraborty,et al.  Symmetry-dependent phonon renormalization in monolayer MoS2transistor , 2012, Physical Review B.

[8]  P. Ajayan,et al.  Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses , 2012 .

[9]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[10]  J. Brivio,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[11]  J. M. Baik,et al.  Band-gap transition induced by interlayer van der Waals interaction in MoS 2 , 2011 .

[12]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[13]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[14]  Sang Wook Lee,et al.  Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy , 2011, 1103.3337.

[15]  Carl W. Magnuson,et al.  Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. , 2011, ACS nano.

[16]  Natalio Mingo,et al.  Flexural phonons and thermal transport in graphene , 2010 .

[17]  R. Ruoff,et al.  Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. , 2010, Nano letters.

[18]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[19]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[20]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[21]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[22]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[23]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[24]  C. N. Lau,et al.  Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices , 2007 .

[25]  Samuel Graham,et al.  Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy. , 2007, The Review of scientific instruments.

[26]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[27]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[28]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[29]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Prawer,et al.  Temperature dependence of the first-order Raman phonon line of diamond , 2000 .

[31]  T. R. Hart,et al.  Temperature Dependence of Raman Scattering in Silicon , 1970 .

[32]  J. Ferraro,et al.  Pressure Dependence of Infrared Eigenfrequencies of KCl and KBr , 1968 .