Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon

We carry out a systematic study of tandem solar cells consisting of III-V nanowire arrays on silicon using electromagnetic simulations and device simulations. For four III-V materials, we use optical simulations and detailed balance analysis to optimize the nanowires' structural parameters to maximize the detailed balance efficiency. The results show different trends for materials with band gaps smaller and larger than optimal, due to the different requirements for achieving current matching. A higher than 30% detailed-balance efficiency can be achieved by using 1 μm-tall nanowire arrays with optimal parameters. Sample device simulations are conducted to compare different junction geometries and surface conditions. We find that radial junctions are more robust to the presence of surface recombination.

[1]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[2]  B. Witzigmann,et al.  Electro-optical modeling of InP nanowire solar cells: Core-shell vs. axial structure , 2010, Numerical Simulation of Optoelectronic Devices.

[3]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[4]  Anuj R. Madaria,et al.  Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth. , 2012, Nano letters.

[5]  S. Bent,et al.  Three-dimensional nanojunction device models for photovoltaics , 2011 .

[6]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[7]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[8]  Sadao Adachi,et al.  Optical Constants of Crystalline and Amorphous Semiconductors , 1999 .

[9]  Sarah R. Kurtz,et al.  Modeling of two‐junction, series‐connected tandem solar cells using top‐cell thickness as an adjustable parameter , 1990 .

[10]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[11]  Xiao Wei Sun,et al.  Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface , 2011 .

[12]  A. Nakano,et al.  Critical dimensions of highly lattice mismatched semiconductor nanowires grown in strain-releasing configurations , 2012 .

[13]  H. A. Atwater,et al.  Predicted efficiency of Si wire array solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[14]  Ningfeng Huang,et al.  Broadband absorption of semiconductor nanowire arrays for photovoltaic applications , 2012 .

[15]  Xiaofeng Li,et al.  Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. , 2011, Optics express.

[16]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.

[17]  K. Ho,et al.  Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation. , 2006, Optics letters.

[18]  安達 定雄,et al.  Optical constants of crystalline and amorphous semiconductors : numerical data and graphical information , 1999 .

[19]  Ray R. LaPierre,et al.  Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells , 2011 .

[20]  John A Rogers,et al.  In(x)Ga(₁-x)As nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics. , 2011, Nano letters.

[21]  L. Samuelson,et al.  Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.

[22]  Lars Samuelson,et al.  Axial InP nanowire tandem junction grown on a silicon substrate. , 2011, Nano letters.

[23]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[24]  Long Wen,et al.  Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells , 2011 .

[25]  Takashi Fukui,et al.  Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate , 2009, Nanotechnology.

[26]  A. Javey,et al.  Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics , 2010 .

[27]  F. Glas Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires , 2006 .

[28]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[29]  A. Kandala,et al.  General theoretical considerations on nanowire solar cell designs , 2009 .

[30]  M. Povinelli,et al.  Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. , 2009, Optics express.

[31]  J. Gilman,et al.  Nanotechnology , 2001 .

[32]  Bozhi Tian,et al.  Single and tandem axial p-i-n nanowire photovoltaic devices. , 2008, Nano letters.

[33]  Ray R. LaPierre,et al.  Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell , 2011 .