Decoupling simulation accuracy from mesh quality

For a given PDE problem, three main factors affect the accuracy of FEM solutions: basis order, mesh resolution, and mesh element quality. The first two factors are easy to control, while controlling element shape quality is a challenge, with fundamental limitations on what can be achieved. We propose to use p-refinement (increasing element degree) to decouple the approximation error of the finite element method from the domain mesh quality for elliptic PDEs. Our technique produces an accurate solution even on meshes with badly shaped elements, with a slightly higher running time due to the higher cost of high-order elements. We demonstrate that it is able to automatically adapt the basis to badly shaped elements, ensuring an error consistent with high-quality meshing, without any per-mesh parameter tuning. Our construction reduces to traditional fixed-degree FEM methods on high-quality meshes with identical performance. Our construction decreases the burden on meshing algorithms, reducing the need for often expensive mesh optimization and automatically compensates for badly shaped elements, which are present due to boundary constraints or limitations of current meshing methods. By tackling mesh generation and finite element simulation jointly, we obtain a pipeline that is both more efficient and more robust than combinations of existing state of the art meshing and FEM algorithms.

[1]  Meekyoung Kim,et al.  Data-driven physics for human soft tissue animation , 2017, ACM Trans. Graph..

[2]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[3]  William F. Mitchell,et al.  A collection of 2D elliptic problems for testing adaptive grid refinement algorithms , 2013, Appl. Math. Comput..

[4]  Cláudio T. Silva,et al.  State of the Art in Quad Meshing , 2012 .

[5]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[6]  Olaf Schenk,et al.  Toward the Next Generation of Multiperiod Optimal Power Flow Solvers , 2018, IEEE Transactions on Power Systems.

[7]  Stephen D. Laycock,et al.  An Edge-based Approach to Adaptively Refining a Mesh for Cloth Deformation , 2009, TPCG.

[8]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[9]  Ernst Rank,et al.  The p‐version of the FEM for computational contact mechanics , 2008 .

[10]  Aljoscha Smolic,et al.  Finite Element Image Warping , 2013, Comput. Graph. Forum.

[11]  Marjorie A. McClain,et al.  A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2014, ACM Trans. Math. Softw..

[12]  Denis Zorin,et al.  Worst-case structural analysis , 2013, ACM Trans. Graph..

[13]  Olaf Schenk,et al.  Enhancing the scalability of selected inversion factorization algorithms in genomic prediction , 2017, J. Comput. Sci..

[14]  Wei-Wen Feng,et al.  A fast multigrid algorithm for mesh deformation , 2006, ACM Trans. Graph..

[15]  Zydrunas Gimbutas,et al.  A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..

[16]  Takeo Igarashi,et al.  Volumetric modeling with diffusion surfaces , 2010, ACM Trans. Graph..

[17]  David Wells,et al.  The deal.II library, Version 9.0 , 2018, J. Num. Math..

[18]  Michael Wimmer,et al.  Non-linear shape optimization using local subspace projections , 2016, ACM Trans. Graph..

[19]  Rahul Narain,et al.  Adaptive Physically Based Models in Computer Graphics , 2017, Comput. Graph. Forum.

[20]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[21]  Wojciech Matusik,et al.  Two-Scale Topology Optimization with Microstructures , 2017, TOGS.

[22]  Katja Bachmeier,et al.  Finite Elements Theory Fast Solvers And Applications In Solid Mechanics , 2017 .

[23]  Robert Bridson,et al.  Detailed water with coarse grids , 2014, ACM Trans. Graph..

[24]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[25]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, ACM Trans. Graph..

[26]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[27]  Wojciech Matusik,et al.  An interaction-aware, perceptual model for non-linear elastic objects , 2016, ACM Trans. Graph..

[28]  Robert Bridson,et al.  Fine water with coarse grids: combining surface meshes and adaptive discontinuous Galerkin , 2013, SIGGRAPH '13.

[29]  Eftychios Sifakis,et al.  An efficient multigrid method for the simulation of high-resolution elastic solids , 2010, TOGS.

[30]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[31]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[32]  Matthias Harders,et al.  Robust interactive cutting based on an adaptive octree simulation mesh , 2011, The Visual Computer.

[33]  Paolo Cignoni,et al.  Elastic textures for additive fabrication , 2015, ACM Trans. Graph..

[34]  P. G. Ciarlet,et al.  General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .

[35]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[36]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[37]  Olga Sorkine-Hornung,et al.  Laplacian Mesh Processing , 2005, Eurographics.

[38]  Cecile Dobrzynski,et al.  MMG3D: User Guide , 2012 .

[39]  Daniele Panozzo,et al.  Tetrahedral meshing in the wild , 2018, ACM Trans. Graph..

[40]  Hongyi Xu,et al.  Pose-space subspace dynamics , 2016, ACM Trans. Graph..

[41]  Mariette Yvinec,et al.  CGALmesh , 2015, ACM Trans. Math. Softw..

[42]  P. G. Ciarlet,et al.  Numerical analysis of the finite element method , 1976 .

[43]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[44]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[45]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[46]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[47]  Frank Tendick,et al.  Adaptive Nonlinear Finite Elements for Deformable Body Simulation Using Dynamic Progressive Meshes , 2001, Comput. Graph. Forum.

[48]  Alec Jacobson,et al.  Thingi10K: A Dataset of 10, 000 3D-Printing Models , 2016, ArXiv.

[49]  Takuya Tsuchiya,et al.  Error analysis of Lagrange interpolation on tetrahedrons , 2016, J. Approx. Theory.

[50]  Elaine Cohen,et al.  Animation of Deformable Bodies with Quadratic Bézier Finite Elements , 2014, ACM Trans. Graph..

[51]  Maria Elizabeth G. Ong,et al.  Uniform Refinement of a Tetrahedron , 1994, SIAM J. Sci. Comput..

[52]  Ernst Rank,et al.  p-FEM applied to finite isotropic hyperelastic bodies , 2003 .

[53]  Markus H. Gross,et al.  PriMo: coupled prisms for intuitive surface modeling , 2006, SGP '06.

[54]  Jan Fostier,et al.  Needles: Toward Large-Scale Genomic Prediction with Marker-by-Environment Interaction , 2016, Genetics.

[55]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[56]  David A. Stuart,et al.  Automatic Construction of Coarse, High-Quality Tetrahedralizations that Enclose and Approximate Surfaces for Animation , 2013, MIG '13.

[57]  Olga Sorkine-Hornung,et al.  Instant field-aligned meshes , 2015, ACM Trans. Graph..

[58]  Jernej Barbic,et al.  Linear subspace design for real-time shape deformation , 2015, ACM Trans. Graph..

[59]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[60]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[61]  Lin Shi,et al.  A fast multigrid algorithm for mesh deformation , 2006, SIGGRAPH 2006.

[62]  Hujun Bao,et al.  Spectral Quadrangulation with Feature Curve Alignment and Element Size Control , 2014, ACM Trans. Graph..

[63]  James F. O'Brien,et al.  Adaptive tearing and cracking of thin sheets , 2014, ACM Trans. Graph..

[64]  Pascal Barla,et al.  Diffusion curves: a vector representation for smooth-shaded images , 2008, ACM Trans. Graph..

[65]  R. Franke A Critical Comparison of Some Methods for Interpolation of Scattered Data , 1979 .

[66]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[67]  Dinesh K. Pai,et al.  Bounce maps , 2017, ACM Trans. Graph..

[68]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..