Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides

The behavior of pointlike electric dipole sources enclosed by an axially uniform, cylindrically symmetric waveguide of omnidirectionally reflecting material is analyzed. It is found that the emission spectrum of a source inside the waveguide is strongly modified by features resembling one-dimensional Van Hove singularities in the local density of states (LDOS). Additionally, more than 100% of the power radiated by a dipole in vacuum can be captured at the end of the waveguide, owing to the overall enhancement of the LDOS (the Purcell effect). The effect of varying the positions and orientations of electric dipole sources is also studied.

[1]  J. Joannopoulos,et al.  Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission , 2002, Nature.

[2]  E. Marcatili,et al.  Hollow metallic and dielectric waveguides for long distance optical transmission and lasers , 1964 .

[3]  W. Weinstein,et al.  The reflectivity and transmissivity of multiple thin coatings. , 1947, Journal of the Optical Society of America.

[4]  N. Doran,et al.  Cylindrical Bragg fibers: A design and feasibility study for optical communications , 1983 .

[5]  Y Matsuura,et al.  Optical properties of small-bore hollow glass waveguides. , 1995, Applied optics.

[6]  M Ibanescu,et al.  Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. , 2001, Optics express.

[7]  Kurt Busch,et al.  PHOTONIC BAND GAP FORMATION IN CERTAIN SELF-ORGANIZING SYSTEMS , 1998 .

[8]  D. Kleppner,et al.  Inhibited spontaneous emission by a Rydberg atom. , 1985, Physical review letters.

[9]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[10]  L. J. Raubenheimer,et al.  Accurate Numerical Method for Calculating Frequency-Distribution Functions in Solids , 1966 .

[11]  Winn,et al.  A dielectric omnidirectional reflector , 1998, Science.

[12]  M. Ibanescu,et al.  An All-Dielectric Coaxial Waveguide. , 2000, Science.

[13]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[14]  A. Lagendijk,et al.  Mode density inside an omnidirectional mirror is heavily directional but not small. , 2000, Optics letters.

[15]  Amnon Yariv,et al.  Observation of confined propagation in Bragg waveguides , 1977 .

[16]  P. Yeh,et al.  Theory of Bragg fiber , 1978 .

[17]  C. M. Sterke,et al.  DIFFERENTIAL LOSSES IN BRAGG FIBERS , 1994 .

[18]  F. Abelès Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés - Application aux couches minces , 1950 .

[19]  J. G. Fleming,et al.  All-metallic three-dimensional photonic crystals with a large infrared bandgap , 2002, Nature.

[20]  M. Miyagi,et al.  Design theory of dielectric-coated circular metallic waveguides for infrared transmission , 1984 .

[21]  James A. Harrington,et al.  A Review of IR Transmitting, Hollow Waveguides , 2000 .

[22]  Burak Temelkuran,et al.  External Reflection from Omnidirectional Dielectric Mirror Fibers , 2002, Science.

[23]  P. Yeh,et al.  Electromagnetic propagation in periodic stratified media. I. General theory , 1977 .

[24]  J. Joannopoulos,et al.  Guiding optical light in air using an all-dielectric structure , 1999 .