The potential of Eucalyptus plantations to restore degraded soils in semi-arid Morocco (NW Africa)

[1]  Alan Grainger,et al.  The extent of forest in dryland biomes , 2017, Science.

[2]  J. L. Gava,et al.  Forest residue maintenance increased the wood productivity of a Eucalyptus plantation over two short rotations , 2016 .

[3]  J. Turner,et al.  Pattern of carbon and nutrient cycling in a small Eucalyptus forest catchment, NSW , 2016 .

[4]  M. Turrión,et al.  Effects of short‐rotation Eucalyptus plantations on soil quality attributes in highly acidic soils of the central highlands of Ethiopia , 2016 .

[5]  E. Vance,et al.  Eucalyptus and Pinus stand density effects on soil carbon sequestration , 2016 .

[6]  J. Hernández,et al.  Management of forest harvest residues affects soil nutrient availability during reforestation of Eucalyptus grandis , 2016, Nutrient Cycling in Agroecosystems.

[7]  Andrea Hevia,et al.  Nutritional, carbon and energy evaluation of Eucalyptus nitens short rotation bioenergy plantations in northwestern Spain , 2016 .

[8]  Y. Nouvellon,et al.  A fast exploration of very deep soil layers by Eucalyptus seedlings and clones in Brazil , 2016 .

[9]  M. Cunha,et al.  Comparison of harvest-related removal of aboveground biomass, carbon and nutrients in pedunculate oak stands and in fast-growing tree stands in NW Spain , 2016 .

[10]  J. Koricheva,et al.  A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams , 2016 .

[11]  J. Oleksyn,et al.  Unearthing the roots of degradation of Quercus pyrenaica coppices : a root-to-shoot imbalance caused by historical management? , 2016 .

[12]  M. Bakker,et al.  Carbon storage in degraded cork oak (Quercus suber) forests on flat lowlands in Morocco , 2016 .

[13]  Alfred E. Hartemink,et al.  Linking soils to ecosystem services — A global review , 2016 .

[14]  J. Stape,et al.  Eucalyptus plantation effects on soil carbon after 20years and three rotations in Brazil , 2016 .

[15]  B. Ringeval,et al.  Forest soil carbon is threatened by intensive biomass harvesting , 2015, Scientific Reports.

[16]  E. Jiménez,et al.  Modeling the above and belowground biomass of planted and coppiced Eucalytpus globulus stands in NW Spain , 2015, Annals of Forest Science.

[17]  G. Landmann,et al.  Quantifying consequences of removing harvesting residues on forest soils and tree growth – A meta-analysis , 2015 .

[18]  Kelin Wang,et al.  Carbon Storage in a Eucalyptus Plantation Chronosequence in Southern China , 2015 .

[19]  C. Castanha,et al.  Litter type control on soil C and N stabilization dynamics in a temperate forest , 2015, Global change biology.

[20]  P. Trichet,et al.  Biomass and nutrients in tree root systems–sustainable harvesting of an intensively managed Pinus pinaster (Ait.) planted forest , 2015 .

[21]  F. Bravo,et al.  Importance of root system in total biomass for Eucalyptus globulus in northern Spain , 2014 .

[22]  L. Vesterdal,et al.  Soil carbon stock change following afforestation in Northern Europe: a meta‐analysis , 2014, Global change biology.

[23]  J. Oleksyn,et al.  The silent shareholder in deterioration of oak growth: common planting practices affect the long-term response of oaks to periodic drought , 2014 .

[24]  Xiaorong Wei,et al.  Global pattern of soil carbon losses due to the conversion of forests to agricultural land , 2014, Scientific Reports.

[25]  H. Miegroet,et al.  Forest Overstory Effect on Soil Organic Carbon Storage: A Meta-analysis , 2014 .

[26]  O. Ovaskainen,et al.  Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest , 2013, Science.

[27]  Ahmed Hracherrass,et al.  Fixation symbiotique de l'azote chez Teline linifolia (L.) Webb & Berth : influences de la profondeur du sol et du recouvrement arborescent dans la subéraie de la Mâamora (Maroc) , 2013 .

[28]  T. Steenhuis,et al.  Eco-hydrological impacts of Eucalyptus in the semi humid Ethiopian Highlands: the Lake Tana Plain , 2013 .

[29]  Alain Albrecht,et al.  Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar , 2012 .

[30]  Min Xiao,et al.  [Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate]. , 2012, Guang pu xue yu guang pu fen xi = Guang pu.

[31]  Yiqi Luo,et al.  Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. , 2012, The New phytologist.

[32]  A. Schrijver,et al.  Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions , 2012, Oecologia.

[33]  S. Reed,et al.  Functional Ecology of Free-Living Nitrogen Fixation: A Contemporary Perspective , 2011 .

[34]  Andreas Gensior,et al.  Temporal dynamics of soil organic carbon after land‐use change in the temperate zone – carbon response functions as a model approach , 2011 .

[35]  José Leonardo de Moraes Gonçalves,et al.  Almost symmetrical vertical growth rates above and below ground in one of the world's most productive forests , 2011 .

[36]  S. Pellerin,et al.  Improving models of forest nutrient export with equations that predict the nutrient concentration of tree compartments , 2008, Annals of Forest Science.

[37]  Dominique Arrouays,et al.  Is ‘grey literature’ a reliable source of data to characterize soils at the scale of a region? A case study in a maritime pine forest in southwestern France , 2010 .

[38]  A. Nouira,et al.  The efforts for cork oak forest management and their effects on soil conservation. , 2010 .

[39]  R. F. Novais,et al.  Alterations of soil chemical properties by eucalyptus cultivation in five regions in the Rio Doce Valley , 2010 .

[40]  Y. Nouvellon,et al.  Biogeochemical cycles of nutrients in tropical Eucalyptus plantations Main features shown by intensive monitoring in Congo and Brazil , 2010 .

[41]  G. Beemster,et al.  Functional Ecology , 2010 .

[42]  R. B. Jackson,et al.  A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. , 2009, Ecological applications : a publication of the Ecological Society of America.

[43]  M. Chaieb,et al.  Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in arid southern Tunisia , 2009 .

[44]  M. Bakker,et al.  Estimation of nutrient content of woody plants using allometric relationships: quantifying the difference between concentration values from the literature and actuals , 2009 .

[45]  M. Seifan Long-term effects of anthropogenic activities on semi-arid sand dunes , 2009 .

[46]  Bert Reubens,et al.  Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation , 2008, Plant and Soil.

[47]  Cindy Q. Tang,et al.  Man-made Versus Natural Forests in Mid-Yunnan, Southwestern China , 2007 .

[48]  G. Andrade,et al.  Promising indicators for assessment of agroecosystems alteration among natural, reforested and agricultural land use in southern Brazil , 2006 .

[49]  Peter E. Thornton,et al.  Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition , 2005 .

[50]  D. Bert,et al.  Estimating stemwood nutrient concentration with an increment borer : a potential source of error , 2005 .

[51]  Tami C. Bond,et al.  Export efficiency of black carbon aerosol in continental outflow: Global implications , 2005 .

[52]  S. Pellerin,et al.  High rates of nitrogen fixation of Ulex species in the understory of maritime pine stands and the potential effect of phosphorus fertilization , 2005 .

[53]  M. Olsson,et al.  Comparison of soil attributes under Cupressus lusitanica and Eucalyptus saligna established on abandoned farmlands with continuously cropped farmlands and natural forest in Ethiopia , 2004 .

[54]  Bajrang Singh,et al.  Fine root biomass and tree species effects on potential N mineralization in afforested sodic soils , 2000, Plant and Soil.

[55]  H. A. Mooney,et al.  Maximum rooting depth of vegetation types at the global scale , 1996, Oecologia.

[56]  Jacques Ranger,et al.  Nutrient dynamics throughout the rotation of Eucalyptus clonal stands in Congo. , 2003, Annals of botany.

[57]  P. Ritson,et al.  Measurement and prediction of biomass and carbon content of Pinus pinaster trees in farm forestry plantations, south-western Australia , 2003 .

[58]  S. Sullivan,et al.  On non‐equilibrium in arid and semi‐arid grazing systems , 2002 .

[59]  Keryn I. Paul,et al.  Change in soil carbon following afforestation , 2002 .

[60]  C. Johnson Cation exchange properties of acid forest soils of the northeastern USA , 2002 .

[61]  N. Peinemann,et al.  SOIL DEGRADATION RELATED TO OVERGRAZING IN THE SEMI-ARID SOUTHERN CALDENAL AREA OF ARGENTINA , 2001 .

[62]  J. Laclau,et al.  Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients. , 2001, Tree physiology.

[63]  C. Vörösmarty,et al.  Anthropogenic Disturbance of the Terrestrial Water Cycle , 2000 .

[64]  J. Laclau,et al.  Dynamics of biomass and nutrient accumulation in a clonal plantation of Eucalyptus in Congo , 2000 .

[65]  E. Dambrine,et al.  Distribution of cation exchange capacity between organic matter and mineral fractions in acid forest soils (Vosges mountains, France) , 1996 .

[66]  A. Michelsen,et al.  Impacts of tree plantations in the Ethiopian highland on soil fertility, shoot and root growth, nutrient utilisation and mycorrhizal colonisation , 1993 .

[67]  D. Flinn,et al.  Impacts of harvesting on nutrients in a eucalypt ecosystem in southeastern Australia , 1993 .

[68]  R. Singh,et al.  Structure and Function of an Age Series of Poplar Plantations in Central Himalaya: I Dry Matter Dynamics , 1992 .

[69]  M. Poore,et al.  The ecological effects of eucalyptus , 1985 .

[70]  Ronald Bellefontaine,et al.  Expérience internationale d'origines d'Eucalyptus camaldulensis Dehn. Dispositif de Sidi Slimane (Maroc) , 1979 .

[71]  J. M. Bremner Determination of nitrogen in soil by the Kjeldahl method , 1960, The Journal of Agricultural Science.

[72]  A. Walkley,et al.  AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD , 1934 .

[73]  Gu Lb,et al.  Soil carbon stocks and land use change : a meta analysis , 2022 .