Virtual Trajectory Augmented Landing Control Based on Dual Quaternion for Lunar Lander

A pinpoint soft landing with a low touchdown velocity is critical for a lunar lander in the terminal landing phase, particularly with respect to scientific exploration missions. However, the main descent thruster of the lander is usually equipped on one side along the body axis, whereas reaction thrusters for attitude control are fixed in three axes. This causes the translational dynamics and the rotational dynamics of the lunar lander to be mutually coupled. In this study, a new force–torque sequential control law is introduced to resolve the coupling effect. To further improve the coupled motion, a virtual landing trajectory augmented control law is designed. The virtual trajectory is represented as a virtual quaternion and is augmented as a command to the lander’s position update using the dual quaternion. A combined augmented landing control algorithm is newly proposed to incorporate the virtual trajectory commands into the force–torque sequential control law. Numerical simulation results with some ca...

[1]  Xiangyu Huang,et al.  GNC system scheme for lunar soft landing spacecraft , 2008 .

[2]  Guangren Duan,et al.  Robust Integrated Translation and Rotation Finite-Time Maneuver of a Rigid Spacecraft Based on Dual Quaternion , 2011 .

[3]  Behcet Acikmese,et al.  Minimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex Optimization , 2010 .

[4]  Bernard A. Kriegsman,et al.  Terminal Guidance and Control Techniques for Soft Lunar Landing , 1962 .

[5]  R. Ramanan,et al.  Analysis of optimal strategies for soft landing on the Moon from lunar parking orbits , 2005 .

[6]  Colin R. McInnes Gravity-turn descent from low circular orbit conditions , 2003 .

[7]  J. Jungmann Gravity turn trajectories through planetary atmospheres , 1967 .

[8]  Guang-Ren Duan,et al.  Integrated translational and rotational control for the terminal landing phase of a lunar module , 2013 .

[9]  Bahram Ravani,et al.  Computer aided geometric design of motion interpolants , 1994 .

[10]  Wei Zhang,et al.  A guidance and control solution for small lunar probe precise-landing mission , 2008 .

[11]  Robert H. Bishop,et al.  Analytical Lunar Descent Guidance Algorithm , 2009 .

[12]  W. S. Widnall Lunar module digital autopilot , 1971 .

[13]  Marcel J. Sidi,et al.  Attitude Transformations in Space , 1997 .

[14]  J. Michael McCarthy,et al.  Dual quaternion synthesis of constrained robotic systems , 2003 .

[15]  S. Citron,et al.  A Terminal Guidance Technique for Lunar Landing , 1964 .

[16]  Jake K. Aggarwal,et al.  Estimation of motion from a pair of range images: A review , 1991, CVGIP Image Underst..

[17]  Zhaowei Sun,et al.  Relative motion coupled control based on dual quaternion , 2013 .

[18]  Panagiotis Tsiotras,et al.  Adaptive Position and Attitude Tracking Controller for Satellite Proximity Operations using Dual Quaternions , 2015 .

[19]  G. Cherry,et al.  A general, explicit, optimizing guidance law for rocket-propelled spaceflight , 1964 .

[20]  Yoshitake Yamaguchi,et al.  3-dimensional near-minimum fuel guidance law of a lunar landing module , 1999 .

[21]  Changbin Yu,et al.  The geometric structure of unit dual quaternion with application in kinematic control , 2012 .

[22]  Clifford,et al.  Preliminary Sketch of Biquaternions , 1871 .

[23]  D. Hu,et al.  Strapdown inertial navigation system algorithms based on dual quaternions , 2005 .

[24]  Maodeng Li,et al.  Analytical Landing Trajectories for Embedded Autonomy , 2010 .

[25]  Mongi A. Abidi,et al.  Pose and motion estimation from vision using dual quaternion-based extended kalman filtering , 1997 .

[26]  J. Wen,et al.  Attitude control without angular velocity measurement: a passivity approach , 1996, IEEE Trans. Autom. Control..

[27]  Haim Weiss,et al.  Quarternion feedback regulator for spacecraft eigenaxis rotations , 1989 .

[28]  A. T. Yang,et al.  Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms , 1964 .

[29]  Colin R. McInnes DIRECT ADAPTIVE CONTROL FOR GRAVITY-TURN DESCENT , 1999 .

[30]  Allan R. Klumpp,et al.  Apollo lunar descent guidance , 1974, Autom..

[31]  Mongi A. Abidi,et al.  Pose and motion estimation using dual quaternion-based extended Kalman filtering , 1998, Electronic Imaging.

[32]  Behcet Acikmese,et al.  Convex programming approach to powered descent guidance for mars landing , 2007 .

[33]  Hamed Hossein Afshari,et al.  A perturbation approach in determination of closed-loop optimal-fuzzy control policy for planetary landing mission , 2009 .

[34]  Kostas Daniilidis,et al.  Hand-Eye Calibration Using Dual Quaternions , 1999, Int. J. Robotics Res..