Quasioptimality of maximum-volume cross interpolation of tensors

We consider a cross interpolation of high-dimensional arrays in the tensor train format. We prove that the maximum-volume choice of the interpolation sets provides the quasioptimal interpolation accuracy, that differs from the best possible accuracy by the factor which does not grow exponentially with dimension. For nested interpolation sets we prove the interpolation property and propose greedy cross interpolation algorithms. We justify the theoretical results and measure speed and accuracy of the proposed algorithm with numerical experiments.

[1]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[2]  Eugene E. Tyrtyshnikov,et al.  Cross approximation in tensor electron density computations , 2010, Numer. Linear Algebra Appl..

[3]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .

[4]  О. С. Лебедева Tensor conjugate-gradient-type method for Rayleigh quotient minimization in block QTT format , 2011 .

[5]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[6]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[7]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[8]  Y. Maday,et al.  Results and Questions on a Nonlinear Approximation Approach for Solving High-dimensional Partial Differential Equations , 2008, 0811.0474.

[9]  Elías Cueto,et al.  Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions , 2012, International journal for numerical methods in biomedical engineering.

[10]  S. Dolgov TT-GMRES: solution to a linear system in the structured tensor format , 2012, 1206.5512.

[11]  Ivan V. Oseledets,et al.  Fast adaptive interpolation of multi-dimensional arrays in tensor train format , 2011, The 2011 International Workshop on Multidimensional (nD) Systems.

[12]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[13]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[14]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[15]  Thomas Huckle,et al.  Subspace Iteration Methods in terms of Matrix Product States , 2012 .

[16]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[17]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[18]  Vladimir A. Kazeev,et al.  Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..

[19]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[20]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[21]  B. Khoromskij Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .

[22]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[23]  E. Tyrtyshnikov Kronecker-product approximations for some function-related matrices , 2004 .

[24]  John J. Bartholdi,et al.  A good submatrix is hard to find , 1982, Oper. Res. Lett..

[25]  Eugene E. Tyrtyshnikov,et al.  Quasioptimality of skeleton approximation of a matrix in the Chebyshev norm , 2011 .

[26]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[27]  Mark Coppejans,et al.  Breaking the Curse of Dimensionality , 2000 .

[28]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[29]  Boris N. Khoromskij,et al.  Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..

[30]  S. Goreinov,et al.  The maximum-volume concept in approximation by low-rank matrices , 2001 .

[31]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[32]  Markus Weimar Breaking the curse of dimensionality , 2015 .

[33]  Vladimir Temlyakov,et al.  CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS , 2022 .

[34]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[35]  Eric Jeckelmann Dynamical density-matrix renormalization-group method , 2002 .

[36]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[37]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[38]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[39]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[40]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[41]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[42]  Lei Tang,et al.  Efficiency Based Adaptive Local Refinement for First-Order System Least-Squares Formulations , 2011, SIAM J. Sci. Comput..

[43]  André Uschmajew,et al.  On Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format , 2013, SIAM J. Numer. Anal..

[44]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[45]  Mario Bebendorf,et al.  Separation of Variables for Function Generated High-Order Tensors , 2014, J. Sci. Comput..

[46]  Virginie Ehrlacher,et al.  Convergence of a greedy algorithm for high-dimensional convex nonlinear problems , 2010, 1004.0095.

[47]  A. Uschmajew,et al.  LOCAL CONVERGENCE OF ALTERNATING SCHEMES FOR OPTIMIZATION OF CONVEX PROBLEMS IN THE TT FORMAT , 2011 .

[48]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[49]  Ivan V. Oseledets,et al.  DMRG Approach to Fast Linear Algebra in the TT-Format , 2011, Comput. Methods Appl. Math..

[50]  Boris N. Khoromskij,et al.  Superfast Fourier Transform Using QTT Approximation , 2012 .

[51]  S. V. Dolgov,et al.  Corrected One-Site Density Matrix Renormalization Group and Alternating Minimal Energy Algorithm , 2013, ENUMATH.

[52]  E. Tyrtyshnikov Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .

[53]  J. Zittartz,et al.  Matrix Product Ground States for One-Dimensional Spin-1 Quantum Antiferromagnets , 1993, cond-mat/9307028.

[54]  I. Oseledets Constructive Representation of Functions in Low-Rank Tensor Formats , 2012, Constructive Approximation.

[55]  Yu-An Chen,et al.  Density matrix renormalization group , 2014 .

[56]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[57]  Jan Schneider-Barnes,et al.  Error estimates for two-dimensional cross approximation , 2010, J. Approx. Theory.

[58]  Boris N. Khoromskij,et al.  Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs , 2010, Comput. Methods Appl. Math..

[59]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[60]  Petros Drineas,et al.  Tensor-CUR decompositions for tensor-based data , 2006, KDD '06.

[61]  Severnyi Kavkaz Pseudo-Skeleton Approximations by Matrices of Maximal Volume , 2022 .

[62]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[63]  S. Goreinov,et al.  Pseudo-skeleton approximations by matrices of maximal volume , 1997 .

[64]  Daniel Kressner,et al.  Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..

[65]  Boris N. Khoromskij,et al.  Computation of extreme eigenvalues in higher dimensions using block tensor train format , 2013, Comput. Phys. Commun..

[66]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[67]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[68]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[69]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[70]  T. A. Porsching,et al.  Estimation of the error in the reduced basis method solution of nonlinear equations , 1985 .

[71]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.