Regulation of peptidoglycan synthesis by outer membrane proteins

Summary Growth of the meshlike peptidoglycan (PG) sacculus located between the bacterial inner and outer membranes (OM) is tightly regulated to ensure cellular integrity, maintain cell shape and orchestrate division. Cytoskeletal elements direct placement and activity of PG synthases from inside the cell but precise spatiotemporal control over this process is poorly understood. We demonstrate that PG synthases are also controlled from outside the sacculus. Two OM lipoproteins, LpoA and LpoB, are essential for the function respectively of PBP1A and PBP1B, the major E. coli bifunctional PG synthases. Each Lpo protein binds specifically to its cognate PBP and stimulates its transpeptidase activity, thereby facilitating attachment of new PG to the sacculus. LpoB shows partial septal localization and our data suggest that the LpoB-PBP1B complex contributes to OM constriction during cell division. LpoA/ LpoB and their PBP docking regions are restricted to γ-proteobacteria, providing models for niche-specific regulation of sacculus growth.

[1]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[2]  P. D. de Boer,et al.  The trans‐envelope Tol–Pal complex is part of the cell division machinery and required for proper outer‐membrane invagination during cell constriction in E. coli , 2007, Molecular microbiology.

[3]  S. Walker,et al.  Lipoprotein Cofactors Located in the Outer Membrane Activate Bacterial Cell Wall Polymerases , 2010, Cell.

[4]  M. Templin,et al.  Cloning and expression of a murein hydrolase lipoprotein from Escherichia coli , 1995, Molecular microbiology.

[5]  J. Höltje,et al.  Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[6]  D. Pink,et al.  Thickness and Elasticity of Gram-Negative Murein Sacculi Measured by Atomic Force Microscopy , 1999, Journal of bacteriology.

[7]  U. Schwarz,et al.  The composition of the murein of Escherichia coli. , 1988, The Journal of biological chemistry.

[8]  Chi‐Huey Wong,et al.  Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli , 2009, Proceedings of the National Academy of Sciences.

[9]  N. Nanninga,et al.  R174 of Escherichia coli FtsZ is involved in membrane interaction and protofilament bundling, and is essential for cell division , 2003, Molecular microbiology.

[10]  N. Nanninga,et al.  Peptidoglycan synthesis during the cell cycle of Escherichia coli: composition and mode of insertion , 1989, Journal of bacteriology.

[11]  Masaru Tomita,et al.  Update on the Keio collection of Escherichia coli single-gene deletion mutants , 2009, Molecular systems biology.

[12]  M. Waldor,et al.  D-Amino Acids Govern Stationary Phase Cell Wall Remodeling in Bacteria , 2009, Science.

[13]  R. Kishony,et al.  Rapid β-lactam-induced lysis requires successful assembly of the cell division machinery , 2009, Proceedings of the National Academy of Sciences.

[14]  Waldemar Vollmer,et al.  Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli , 2006, Molecular microbiology.

[15]  N. Krogan,et al.  Phenotypic Landscape of a Bacterial Cell , 2011, Cell.

[16]  P. Taschner,et al.  Division behavior and shape changes in isogenic ftsZ, ftsQ, ftsA, pbpB, and ftsE cell division mutants of Escherichia coli during temperature shift experiments , 1988, Journal of bacteriology.

[17]  Jeff Errington,et al.  Bacterial cell division: assembly, maintenance and disassembly of the Z ring , 2009, Nature Reviews Microbiology.

[18]  E. Breukink,et al.  In Vitro Synthesis of Cross-linked Murein and Its Attachment to Sacculi by PBP1A from Escherichia coli* , 2006, Journal of Biological Chemistry.

[19]  W. Vollmer,et al.  Demonstration of Molecular Interactions between the Murein Polymerase PBP1B, the Lytic Transglycosylase MltA, and the Scaffolding Protein MipA of Escherichia coli * , 1999, The Journal of Biological Chemistry.

[20]  Daniel Lim,et al.  Structural Insight into the Transglycosylation Step of Bacterial Cell-Wall Biosynthesis , 2007, Science.

[21]  M. Record,et al.  Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. , 2000, Biophysical journal.

[22]  R. Lloubès,et al.  Pal Lipoprotein of Escherichia coli Plays a Major Role in Outer Membrane Integrity , 2002, Journal of bacteriology.

[23]  E. Breukink,et al.  The Essential Cell Division Protein FtsN Interacts with the Murein (Peptidoglycan) Synthase PBP1B in Escherichia coli* , 2007, Journal of Biological Chemistry.

[24]  K. Young,et al.  Septal and lateral wall localization of PBP5, the major D,D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment , 2010, Molecular microbiology.

[25]  J. Dubochet,et al.  Cryo-Transmission Electron Microscopy of Frozen-Hydrated Sections of Escherichia coli and Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[26]  D. Rudner,et al.  A highly coordinated cell wall degradation machine governs spore morphogenesis in Bacillus subtilis. , 2010, Genes & development.

[27]  B. Glauner,et al.  Growth pattern of the murein sacculus of Escherichia coli. , 1990, The Journal of biological chemistry.

[28]  Roberto Kolter,et al.  d-Amino Acids Trigger Biofilm Disassembly , 2010, Science.

[29]  N. Vázquez-Laslop,et al.  Molecular Sieve Mechanism of Selective Release of Cytoplasmic Proteins by Osmotically Shocked Escherichia coli , 2001, Journal of bacteriology.

[30]  A. L. Koch,et al.  Elasticity of the sacculus of Escherichia coli , 1992, Journal of bacteriology.

[31]  J. Irgon,et al.  Quantitative genome-scale analysis of protein localization in an asymmetric bacterium , 2009, Proceedings of the National Academy of Sciences.

[32]  H. McAdams,et al.  The Caulobacter Tol-Pal Complex Is Essential for Outer Membrane Integrity and the Positioning of a Polar Localization Factor , 2010, Journal of bacteriology.

[33]  James T. Park,et al.  Growth of Escherichia coli: Significance of Peptidoglycan Degradation during Elongation and Septation , 2008, Journal of bacteriology.

[34]  S. Foster,et al.  Bacterial peptidoglycan (murein) hydrolases. , 2008, FEMS microbiology reviews.

[35]  M. de Pedro,et al.  Murein (Peptidoglycan) Binding Property of the Essential Cell Division Protein FtsN from Escherichia coli , 2004, Journal of bacteriology.

[36]  R. Lloubès,et al.  Escherichia coli tol-pal Mutants Form Outer Membrane Vesicles , 1998, Journal of bacteriology.

[37]  Y. Brun,et al.  Cell cycle‐dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus , 2004, Molecular microbiology.

[38]  Waldemar Vollmer,et al.  The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus , 2007, Molecular microbiology.

[39]  Mithilesh Mishra,et al.  Faculty Opinions recommendation of High-throughput, quantitative analyses of genetic interactions in E. coli. , 2008 .

[40]  T. Vernet,et al.  Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin‐binding proteins during the cell cycle , 2003, Molecular microbiology.

[41]  S. Cohen,et al.  Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. , 1980, Journal of molecular biology.

[42]  A. Heck,et al.  Lipid II Is an Intrinsic Component of the Pore Induced by Nisin in Bacterial Membranes* , 2003, Journal of Biological Chemistry.

[43]  T. Bernhardt,et al.  Daughter cell separation is controlled by cytokinetic ring‐activated cell wall hydrolysis , 2010, The EMBO journal.

[44]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  W. Vollmer,et al.  Peptidoglycan Crosslinking Relaxation Promotes Helicobacter pylori's Helical Shape and Stomach Colonization , 2010, Cell.

[46]  W. Vollmer,et al.  Overproduction of Inactive Variants of the Murein Synthase PBP1B Causes Lysis in Escherichia coli , 2003, Journal of bacteriology.

[47]  J. Errington,et al.  Control of Cell Morphogenesis in Bacteria Two Distinct Ways to Make a Rod-Shaped Cell , 2003, Cell.

[48]  B. Spratt,et al.  Lysis of Escherichia coli by beta-lactam antibiotics: deletion analysis of the role of penicillin-binding proteins 1A and 1B. , 1985, Journal of general microbiology.

[49]  J. Errington,et al.  Several distinct localization patterns for penicillin‐binding proteins in Bacillus subtilis , 2003, Molecular microbiology.

[50]  M. de Pedro,et al.  Murein segregation in Escherichia coli , 1997, Journal of bacteriology.

[51]  L. Burman,et al.  Molecular model for elongation of the murein sacculus of Escherichia coli. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. L. Koch,et al.  The permeability of the wall fabric of Escherichia coli and Bacillus subtilis , 1996, Journal of bacteriology.

[53]  James T. Park,et al.  How Bacteria Consume Their Own Exoskeletons (Turnover and Recycling of Cell Wall Peptidoglycan) , 2008, Microbiology and Molecular Biology Reviews.

[54]  W. Vollmer,et al.  Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. , 2008, Biochimica et biophysica acta.

[55]  Waldemar Vollmer,et al.  In Vitro Murein (Peptidoglycan) Synthesis by Dimers of the Bifunctional Transglycosylase-Transpeptidase PBP1B from Escherichia coli* , 2005, Journal of Biological Chemistry.

[56]  C. L. Chepanoske,et al.  Ampicillin/penicillin‐binding protein interactions as a model drug‐target system to optimize affinity pull‐down and mass spectrometric strategies for target and pathway identification , 2005, Proteomics.

[57]  Yu-Ling Shih,et al.  The Bacterial Cytoskeleton , 2006, Microbiology and Molecular Biology Reviews.

[58]  J. Löwe,et al.  Distribution of the Escherichia coli structural maintenance of chromosomes (SMC)‐like protein MukB in the cell , 2001, Molecular microbiology.

[59]  M. de Pedro,et al.  Peptidoglycan structure and architecture. , 2008, FEMS microbiology reviews.

[60]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[61]  T. den Blaauwen,et al.  Maturation of the Escherichia coli divisome occurs in two steps , 2005, Molecular microbiology.

[62]  M. Casadaban,et al.  Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. , 1976, Journal of molecular biology.

[63]  S. Ehrlich,et al.  Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. , 2006, Developmental cell.