Historical Land Use as a Feature for Image Classification

This paper analyzes the effect of the addition of historical land-use as a descriptive feature in plot-based image classification when updating land-use/land-cover geospatial databases. Several historical databases have been simulated to assess the influence and significance of this feature in the classification. The causes, nature, and evolution of classification errors as the database currency varies are analyzed; and the impact of these errors on change detection during the updating process is evaluated. The results show that the addition of historical land-use information increases the overall accuracy of image classifications. During a database updating process, changes are detected by comparing the historical land-use with the classification results. The main drawback of employing historical land-use as a descriptive feature in image classification for change detection is that the percentage of undetectable errors significantly increases as more accurate is the database information.

[1]  Felipe de Jesús Núñez Cárdenas,et al.  Introducción a la Minería de Datos , 2011 .

[2]  Recio Recio,et al.  Técnicas de extracción de características y clasificación de imágenes orientada a objetos aplicadas a la actualización de bases de datos de ocupación del suelo , 2011 .

[3]  C. Wright,et al.  Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data , 2007 .

[4]  Philip J. Morrow,et al.  Using Dempster–Shafer to incorporate knowledge into satellite image classification , 2006, Artificial Intelligence Review.

[5]  Xavier Blaes,et al.  Efficiency of crop identification based on optical and SAR image time series , 2005 .

[6]  Damien Raclot,et al.  Updating land cover classification using a rule‐based decision system , 2005 .

[7]  J.-F. Mas,et al.  An artificial neural networks approach to map land use/cover using Landsat imagery and ancillary data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[8]  Jennifer A. Miller,et al.  Land-Cover Change Monitoring with Classification Trees Using Landsat TM and Ancillary Data , 2003 .

[9]  LIDeren,et al.  Automatic change detection of geo-spatial data from imagery , 2003 .

[10]  Erkki Tomppo,et al.  Stratification by ancillary data in multisource forest inventories employing k-nearest-neighbour estimation , 2002 .

[11]  Mark A. Friedl,et al.  Using prior probabilities in decision-tree classification of remotely sensed data , 2002 .

[12]  Y. Cohen,et al.  A national knowledge-based crop recognition in mediterranean environment , 2002 .

[13]  E. Wolff,et al.  Textural and contextual land-cover classification using single and multiple classifier systems , 2002 .

[14]  H. Heipke,et al.  Image Analysis for GIS Data Acquisition , 2000 .

[15]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[16]  F. Roli,et al.  Multisource Classification of Complex Rural Areas by Statistical and Neural-Network Approaches , 1997 .

[17]  Fabio Maselli,et al.  Integration of ancillary data into a maximum-likelihood classifier with nonparametric priors , 1995 .

[18]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[19]  L.L.F. Janssen,et al.  Knowledge-based crop classification of a Landsat thematic mapper image , 1992 .

[20]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[21]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1990, COLT '90.

[22]  Ioannis Kanellopoulos,et al.  Global Elevation Ancillary Data for Land-use Classification Using Granular Neural Networks , 2008 .

[23]  Paul J. Curran,et al.  Merging spectral and textural information for classifying remotely sensed images , 2004 .

[24]  Volker Walter,et al.  Object-based classification of remote sensing data for change detection , 2004 .

[25]  R. Lawrence Rule-Based Classification Systems Using Classification and Regression Tree (CART) Analysis , 2001 .

[26]  L. Pedroni Discriminación de diferentes tipos de bosque tropical mediante imágenes de satélite y datos auxiliares , 2001 .

[27]  Rajendra P. Shrestha,et al.  Application of DEM Data to Landsat Image Classification: Evaluation in a Tropical Wet-Dry Landscape of Thailand , 2000 .

[28]  P. Treitz,et al.  Integrating spectral, spatial, and terrain variables for forest ecosystem classification , 2000 .

[29]  Evaristo Ricchetti,et al.  Multispectral Satellite Image and Ancillary Data Integration for Geological Classification , 2000 .

[30]  J. Borak Feature selection and land cover classification of a MODIS-like data set for a semiarid environment , 1999 .

[31]  Xueqiao Huang,et al.  A Machine-Learning Approach to Automated Knowledge-Base Building for Remote Sensing Image Analysis with GIs Data , 1997 .

[32]  R. Congalton,et al.  Accuracy assessment: a user's perspective , 1986 .

[33]  John Szajgin,et al.  Landsat classification accuracy assessment procedures , 1982 .

[34]  T. Logan,et al.  Improving forest cover classification accuracy from Landsat by incorporating topographic information , 1978 .