Application of Data Mining Methods in the Study of Crime Based on International Data Sources

..................................................................................................................................... i Acknowledgements .................................................................................................................. iii Chapter

[1]  Shamik Sural,et al.  CNODE: clustering of set-valued non-ordered discrete data , 2009, Int. J. Data Min. Model. Manag..

[2]  M Juhola,et al.  Malthusian parameter on the Finnish population in the 20th century. , 1996, International journal of bio-medical computing.

[3]  Jeffrey T. Grogger,et al.  Market Wages and Youth Crime , 1997, Journal of Labor Economics.

[4]  John Wang,et al.  Diminishing downsides of Data Mining , 2007, Int. J. Bus. Intell. Data Min..

[5]  John Zeleznikow,et al.  Decision support systems for police: Lessons from the application of data mining techniques to “soft” forensic evidence , 2006, Artificial Intelligence and Law.

[6]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[7]  P. Brockett,et al.  Using Kohonen's Self-Organizing Feature Map to Uncover Automobile Bodily Injury Claims Fraud , 1998 .

[8]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[9]  James A. Mahaffey,et al.  Multiple Self-Organizing Maps for Intrusion Detection , 2000 .

[10]  Olli Simula,et al.  A Self-Organizing Map for Clustering Probabilistic Models , 1999 .

[11]  Richard Adderley,et al.  Modus Operandi Modelling of Group Offending: A Data-Mining Case Study , 2003 .

[12]  Olusola Adeniyi Abidogun Data mining, fraud detection and mobile telecommunications: call pattern analysis with unsupervised neural networks , 2005 .

[13]  K. Harries,et al.  Property Crimes and Violence in United States: An Analysis of the influence of Population density , 2006 .

[14]  Monica A. Walker,et al.  The urban criminal: A study in Sheffield , 1976 .

[15]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[16]  M. B. Clinard Sociology of deviant behavior , 1964 .

[17]  H. Holzer,et al.  The Black Youth Employment Crisis , 1986 .

[18]  Kristine M. Terrones,et al.  Computer-aided tracking and characterization of homicides and sexual assaults (CATCH) , 1999, Defense, Security, and Sensing.

[19]  Vladimir Zaslavsky,et al.  Credit Card Fraud Detection Using Self-Organizing Maps , 2006 .

[20]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[21]  O. J. Vrieze,et al.  Kohonen Network , 1995, Artificial Neural Networks.

[22]  Sandra M. Bucerius Immigrants and Crime , 2011 .

[23]  R. S. Thakur,et al.  Maximal Pattern Mining Using Fast CP-Tree for Knowledge Discovery , 2012, Int. J. Inf. Syst. Soc. Chang..

[24]  J. Gibbs Crime, punishment, and deterrence , 1975 .

[25]  Timo Honkela,et al.  BIBLIOGRAPHY OF SELF-ORGANIZING MAP (SOM) PAPERS: 2002-2005 ADDENDUM , 2009 .

[26]  Tim Wadsworth Is Immigration Responsible for the Crime Drop? An Assessment of the Influence of Immigration on Changes in Violent Crime Between 1990 and 2000 , 2010 .

[27]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[28]  Stefan Axelsson,et al.  Understanding Intrusion Detection Through Visualization , 2006, Advances in Information Security.

[29]  Paolo Giudici,et al.  Applied Data Mining: Statistical Methods for Business and Industry , 2003 .

[30]  Show-chin Lee,et al.  Applying AI technology and rough set theory for mining association rules to support crime management and fire-fighting resources allocation , 2002 .

[31]  Richard Adderley,et al.  The Use of Data Mining Techniques in Operational Crime Fighting , 2004, ISI.

[32]  L. Lochner Education and crime , 2020, The Economics of Education.

[33]  Andreas Rauber,et al.  The growing hierarchical self-organizing map , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[34]  Franklin E. Zimring,et al.  The Great American Crime Decline , 2006 .

[35]  J. Martin,et al.  Births: final data for 2009. , 2011, National vital statistics reports : from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System.

[36]  Vadlamani Ravi,et al.  Support vector machine and wavelet neural network hybrid: application to bankruptcy prediction in banks , 2010, Int. J. Data Min. Model. Manag..

[37]  Michael K. Ng,et al.  SMART: a subspace clustering algorithm that automatically identifies the appropriate number of clusters , 2009, Int. J. Data Min. Model. Manag..

[38]  Martti Juhola,et al.  A scatter method for data and variable importance evaluation , 2012, Integr. Comput. Aided Eng..

[39]  Martti Juhola,et al.  Comparing the One-vs-One and One-vs-All Methods in Benthic Macroinvertebrate Image Classification , 2011, MLDM.

[40]  Xinghuo Yu,et al.  An unsupervised neural network approach to predictive data mining , 2011, Int. J. Data Min. Model. Manag..

[41]  Ted Chiricos,et al.  Punishment and Crime: An Examination of Some Empirical Evidence , 1970 .

[42]  Denise C. Gottfredson,et al.  School Size and School Disorder. , 1985 .

[43]  M. Roser Employment in Agriculture , 2013 .

[44]  Vincent Lemaire,et al.  The Many Faces of a Kohonen Map A Case Study: SOM-based Clustering for On-Line Fraud Behavior Classification , 2005, Classification and Clustering for Knowledge Discovery.

[45]  Hokky Situngkir EMERGING THE EMERGENCE SOCIOLOGY: THE PHILOSOPHICAL FRAMEWORK OF AGENT-BASED SOCIAL STUDIES , 2003 .

[46]  J. Braithwaite,et al.  Unemployment and Crime: Toward Resolving the Paradox , 1998 .

[47]  Richard Adderley,et al.  Use of data mining techniques to model crime scene investigator performance , 2007, Knowl. Based Syst..

[48]  Claes Leufvén Detecting SSH identity theft in HPC cluster environments using Self-organizing maps , 2006 .

[49]  T. Snijders Statistical Models for Social Networks , 2011 .

[50]  A. Hama Demographic Change and Social Breakdown: The Role of Intelligence , 1999 .

[51]  C. Sumner The Social Nature of Crime and Deviance , 2007 .

[52]  Delinquency, Crime and Differential Association , 1964, Springer Netherlands.

[53]  Sheng-Tun Li,et al.  A Knowledge Discovery Approach to Supporting Crime Prevention , 2006, JCIS.

[54]  Paola Britos,et al.  Detecting Fraud in Mobile Telephony Using Neural Networks , 2005, IEA/AIE.

[55]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[56]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[57]  Rodrigo R. Soares Development, crime and punishment: accounting for the international differences in crime rates , 2004 .

[58]  D. Cressey,et al.  Principles of Criminology. , 1947 .

[59]  C. Glock,et al.  Trial by newspaper. , 1949, Scientific American.

[60]  L. Wirth,et al.  Urbanism as a Way of Life , 1938, American Journal of Sociology.

[61]  Martti Juhola,et al.  Crime and Its Social Context: Analysis Using the Self-Organizing Map , 2013, 2013 European Intelligence and Security Informatics Conference.

[62]  B. K. L. Feia,et al.  The use of self-organising maps for anomalous behaviour detection in a digital investigation , 2006 .

[63]  D. R. Taft,et al.  Criminology: A Cultural Interpretation , 1951 .

[64]  Bart Baesens,et al.  Country Corruption Analysis with Self Organizing Maps and Support Vector Machines , 2006, WISI.

[65]  Jean Meunier,et al.  Real-time video surveillance with self-organizing maps , 2005, The 2nd Canadian Conference on Computer and Robot Vision (CRV'05).

[66]  Masahiro Tsushima Economic structure and crime: The case of Japan , 1996 .

[67]  P. Rock History of criminology , 1994 .

[68]  Jaakko Hollmén,et al.  User profiling and classification for fraud detection in mobile communications networks , 2000 .

[69]  Q.A. Memon,et al.  Crime investigation and analysis using neural nets , 2003, 7th International Multi Topic Conference, 2003. INMIC 2003..

[70]  Charles R. Tittle,et al.  Certainty of Arrest and Crime Rates: A Further Test of the Deterrence Hypothesis , 1974 .

[71]  Martti Juhola,et al.  Country crime analysis using the self-organizing map, with special regard to demographic factors , 2013, AI & SOCIETY.

[72]  Alfred Blumstein,et al.  The Crime Drop in America: Frontmatter , 2005 .

[73]  Charles R. Tittle,et al.  Crime Rates and Legal Sanctions , 1969 .

[74]  Anthony Scime,et al.  Testing terrorism theory with data mining , 2010, Int. J. Data Anal. Tech. Strateg..

[75]  Hannu Koivisto,et al.  Profiling Network Applications with Fuzzy C-means and Self-Organizing Maps , 2005, Classification and Clustering for Knowledge Discovery.

[76]  Markus Koskela,et al.  Interactive image retrieval using self-organizing maps , 2003 .

[77]  Jan H. P. Eloff,et al.  Exploring Forensic Data with Self-Organizing Maps , 2005, IFIP Int. Conf. Digital Forensics.

[78]  John K. Truss Discrete mathematics for computer scientists , 1991, International computer science series.

[79]  J. Spencer SOCIOLOGY OF DEVIANT BEHAVIOUR , 1964 .

[80]  Kwabena Gyimah-Brempong,et al.  Alcohol Availability and Crime: Evidence from Census Tract Data , 2001 .

[81]  Hsinchun Chen,et al.  Evaluating event visualization: a usability study of COPLINK spatio-temporal visualizer , 2005, Int. J. Hum. Comput. Stud..

[82]  Sebastián Lozano,et al.  Data envelopment analysis of the human development index , 2008 .

[83]  Martti Juhola,et al.  Kernel selection in multi-class support vector machines and its consequence to the number of ties in majority voting method , 2011, Artificial Intelligence Review.