Concentrically layered energy equilibria of the di-block copolymer problem

We prove the existence of energy equilibria of the di-block copolymer problem in the unit disk. They consist of concentrically layered micro-domains rich in one of the two monomer building units. We construct them by solving the proper singular limit of the free energy functional. The same limit also explains how under a dynamic law of the free energy, circular interfaces of non-equilibria may move to the origin and vanish, or collapse to each other, thereby reducing the number of layers.

[1]  Rustum Choksi,et al.  Scaling Laws in Microphase Separation of Diblock Copolymers , 2001, J. Nonlinear Sci..

[2]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[3]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[5]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[6]  L. Evans Measure theory and fine properties of functions , 1992 .

[7]  Juncheng Wei,et al.  On the stationary Cahn-Hilliard equation bubble solutions , 1998 .

[8]  Robert V. Kohn,et al.  Local minimisers and singular perturbations , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[10]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[11]  Yasumasa Nishiura,et al.  Some mathematical aspects of the micro-phase separation in diblock copolymers , 1995 .

[12]  M. Henry Singular limit of a fourth-order problem arising in the microphase separation of diblock copolymers , 2001 .

[13]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[14]  Oono,et al.  Cell dynamical system approach to block copolymers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[15]  Stefan Müller,et al.  Singular perturbations as a selection criterion for periodic minimizing sequences , 1993 .

[16]  Y. Nishiura,et al.  Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term. , 1999, Chaos.

[17]  Paul C. Fife,et al.  The Nishiura-Ohnishi Free Boundary Problem in the 1D Case , 2001, SIAM J. Math. Anal..

[18]  Xiaofeng Ren,et al.  On the Multiplicity of Solutions of Two Nonlocal Variational Problems , 2000, SIAM J. Math. Anal..