Influence of annealing on atomic layer deposited Cr2O3-TiO2 thin films
暂无分享,去创建一个
Rainer Pärna | A. Tarre | A. Rosental | Teet Uustare | Hugo Mändar | A. Gerst | Ahti Niilisk | Väino Sammelselg | T. Uustare | V. Sammelselg | H. Mändar | A. Tarre | R. Pärna | A. Gerst | A. Rosental | A. Niilisk
[1] Room temperature ferromagnetism in anatase Ti0.95Cr0.05O2 thin films: Clusters or not? , 2004 .
[2] M. Rȩkas,et al. Defect chemistry and semiconducting properties of titanium dioxide: I. Intrinsic electronic equilibrium , 2003 .
[3] J. Wöllenstein,et al. Preparation, morphology, and gas-sensing behavior of Cr/sub 2-x/Ti/sub x/O/sub 3+z/ thin films on standard silicon wafers , 2002 .
[4] S. McBride,et al. Analytical transmission electron microscopy and surface spectroscopy of ceramics: The microstructural evolution in titanium-doped chromia polycrystals as a function of sintering conditions , 2004 .
[5] E. Iguchi,et al. Electrical properties of chromia-doped rutile (TiO3) , 1979 .
[6] W. D. Callister,et al. Sintering Chromium Oxide with the Aid of TiO2 , 1979 .
[7] H. Gerritsen,et al. Fine Structure, Hyperfine Structure, and Relaxation Times of Cr 3 + in Ti O 2 (Rutile) , 1959 .
[8] Katarzyna Zakrzewska,et al. Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films , 1997 .
[9] M. Graetzel,et al. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles , 1982 .
[10] N. H. Hong. Ferromagnetism in transition-metal-doped semiconducting oxide thin films , 2006 .
[11] M. Girtan,et al. Chromium-doped titanium oxide thin films , 2005 .
[12] A. Holt,et al. Electrical conductivity of Cr2O3 doped with TiO2 , 1999 .
[13] H. Nagai,et al. Effect of TiO2 on the Sintering and the Electrical Conductivity of Cr2O3 , 1989 .
[14] S. Karvinen,et al. The Effects of Trace Element Doping on the Optical Properties and Photocatalytic Activity of Nanostructured Titanium Dioxide , 2003 .
[15] J. Nowotny,et al. Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams☆ , 2003 .
[16] Ioan Burda,et al. X-ray absorption study of Cr2O3-TiO2 system , 1995, Other Conferences.
[17] G. Gao,et al. Half-metallic ferromagnetism of Cr-doped rutile TiO2: A first-principles pseudopotential study , 2006 .
[18] F. Perdu,et al. Point defects and charge transport in pure and chromium-doped rutile at 1273 K , 1989 .
[19] Wojtek Wlodarski,et al. Gas Sensing Properties of P-type Semiconducting Cr-doped TiO2 Thin Films , 2002 .
[20] A. Cornet,et al. Preparation of Cr-Doped TiO2 Thin Film of P-type Conduction for Gas Sensor Application , 2002 .
[21] D. K. Philp,et al. New crystallographic shear families derived from the rutile structure, and the possibility of continuous ordered solid solution , 1971 .
[22] Jing Du,et al. Electrostatic spray assisted vapour deposition of TiO2-based films , 2004 .
[23] Marta Radecka,et al. Electrical properties of Cr- and Nb-doped TiO2 thin films , 1993 .
[24] M. C. Bhatnagar,et al. Improvement of the oxygen gas sensitivity in doped TiO2 thick films , 1999 .
[25] A. Kellock,et al. Ferromagnetism and structure of epitaxial Cr-doped anatase TiO 2 thin films , 2006 .
[26] T. Uustare,et al. Atomic scale optical monitoring of the initial growth of TiO2 thin films , 2001 .
[27] J. Sakai,et al. Ferromagnetism in transition-metal-doped Ti O 2 thin films , 2004 .
[28] Kengo Shimanoe,et al. Cr-doped TiO 2 gas sensor for exhaust NO 2 monitoring , 2003 .
[29] M. Graetzel,et al. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles , 1982 .
[30] K. I. Gnanasekar,et al. Preparation and characterisation of Cr2−xTixO3+δ and its sensor properties , 1999 .
[31] Ivan P. Parkin,et al. A simple equivalent circuit model to represent microstructure effects on the response of semiconducting oxide-based gas sensors , 2003 .
[32] A. Naoumidis,et al. Phase studies in the chromium-manganese-titanium oxide system at different oxygen partial pressures , 1991 .
[33] A. Ghosh,et al. Transition-metal dopants for extending the response of titanate photoelectrolysis anodes , 1979 .
[34] Ivan P. Parkin,et al. Atmospheric pressure chemical vapour deposition of Cr2−xTixO3(CTO) thin films (≤3 µm) on to gas sensing substrates , 2003 .
[35] Y. Mok,et al. Nonthermal Plasma-Enhanced Catalytic Removal of Nitrogen Oxides over V2O5/TiO2 and Cr2O3/TiO2 , 2003 .
[36] A. Kellock,et al. Negligible magnetism in excellent structural quality Cr(x)Ti(1-x)O(2) anatase: contrast with high-T(C) ferromagnetism in structurally defective Cr(x)Ti(1-x)O(2). , 2005, Physical review letters.
[37] M. Malati,et al. Doped TiO2 for solar energy applications , 1986 .
[38] J. Suehle,et al. Microhotplate Platforms for Chemical Sensor Research , 2001 .
[39] T. Uustare,et al. Nanocrystalline Cr2O3–TiO2 thin films by pulsed laser deposition , 2005 .
[40] T. Uustare,et al. Chloride atomic-layer chemical vapor deposition of TiO2 with a chloride pretreatment of substrates , 2001 .
[41] F. Tietz,et al. Electrical Conductivity of Sintered Chromia Mixed with TiO2, CuO and Mn-Oxides , 2009 .
[42] S. Hirano,et al. Phase relations of the Cr2O3TiO2 system , 1978 .
[43] Jingying Shi,et al. Electrochemically assisted photocatalytic oxidation of nitrite over Cr-doped TiO2 under visible light , 2006 .
[44] J. Fergus. Doping and defect association in oxides for use in oxygen sensors , 2003 .
[45] G. L. Sharma,et al. Influence of doping on sensitivity and response time of TiO2 oxygen gas sensor , 2000 .
[46] S. Hirano,et al. The compound Cr2TiO5 in the system Cr2O3TiO2 , 1979 .
[47] R. S. Biasi,et al. Measurement of small concentrations of chromium and iron in rutile (TiO2) using electron spin resonance , 1993 .
[48] Zhenjun Wang,et al. Ferromagnetism in chromium-doped reduced-rutile titanium dioxide thin films , 2004 .
[49] Ivan P. Parkin,et al. Metal oxide semiconductor gas sensors utilizing a Cr-zeolite catalytic layer for improved selectivity , 2005 .
[50] T. I. Barry,et al. Mixed oxides prepared with an induction plasma torch , 1968 .
[51] Chong-Min Wang,et al. Growth of Cr-doped TiO2 films in the rutile and anatase structures by oxygen plasma assisted molecular beam epitaxy , 2005 .
[52] C. Richard A. Catlow,et al. Experimental and computational study of the gas-sensor behaviour and surface chemistry of the solid-solution Cr2−xTixO3(x≤ 0.5) , 2002 .
[53] R.M.C. de Almeida,et al. Reaction–diffusion in high-k dielectrics on Si , 2003 .
[54] Ivan P. Parkin,et al. A microstructural model of semiconducting gas sensor response: The effects of sintering temperature on the response of chromium titanate (CTO) to carbon monoxide , 2006 .
[55] A. Lambrecht,et al. The influence of light on the gas sensitive properties of microstructured metal oxide thin films , 2005, SPIE Microtechnologies.
[56] G. Arends. I und J , 1958 .
[57] M. Hayashi,et al. Spectroscopic Study of the Chemical State and Coloration of Chromium in Rutile , 1990 .
[58] V. Mikli,et al. AXES1.9: new tools for estimation of crystallite size and shape by Williamson–Hall analysis , 1999 .
[59] F. Lévy,et al. Intrinsic low energy bombardment of titanium chromium oxide thin films prepared by reactive sputtering , 2000 .
[60] F. Perdu,et al. ELECTRONIC CONDUCTION IN PURE AND CHROMIUM-DOPED RUTILE AT 1273 K , 1986 .
[61] K. Asai,et al. UV-ray photoelectron and ab initio band calculation studies on electronic structures of Cr- or Nb-ion implanted titanium dioxide , 2003 .
[62] V. Rives,et al. Structural and surface characterization of the polycrystalline system CrxOy · TiO2 employed for photoreduction of dinitrogen and photodegradation of phenol , 1992 .
[63] M. Engelhard,et al. Synthesis of room-temperature ferromagnetic Cr-doped TiO2(110) rutile single crystals using ion implantation , 2006 .
[64] Jing Du,et al. Controlled synthesis of gas sensing Cr2−xTixO3 films by electrostatic spray assisted vapour deposition and their structural characterisation , 2006 .
[65] J. Baumard,et al. Electrical properties and defect structure of rutile slightly doped with Cr and Ta , 1980 .
[66] K. I. Gnanasekar,et al. Soft-chemical preparation and gas sensing properties of iron and manganese substituted Cr1.8Ti0.2O3+δ , 2004 .
[67] David E. Williams,et al. Description and characterization of a hydrogen sulfide gas sensor based on Cr2-yTiyO3+x , 1995 .
[68] Kengo Shimanoe,et al. Cr-doped TiO2 gas sensor for exhaust NO2 monitoring , 2003 .
[69] V. Shutthanandan,et al. Cr-doped TiO2 anatase: A ferromagnetic insulator , 2005 .
[70] M. O'Keeffe,et al. Interdiffusion and the solubility limits of Cr2O3 in the rutile phase of TiO2 , 1972 .
[71] M. Yoshimura,et al. Microstructural study for a homologous series of Cr2Tin−2O2n−1 with (12̄1)r crystallographic shear structure , 1980 .
[72] L. Bursill,et al. Temperature dependence of the solubility limit of chromia (Cr2O3) in titania (TiO2) , 1984 .
[73] D. K. Philp,et al. Continuous structure variation and rotating reciprocal lattices in the titanium–chromium oxides , 1974 .
[74] P. T. Moseley,et al. A selective ammonia sensor , 1990 .
[75] Zhenjun Wang,et al. Transport properties in chromium-doped Ti2O3 thin films , 2005 .
[76] J. Sakai,et al. Magnetic structure of V:TiO2 and Cr:TiO2 thin films from magnetic force microscopy measurements , 2005 .
[77] David E. Williams,et al. Microspheres of the gas sensor material Cr2 − xTixO3 prepared by the sol–emulsion–gel route , 2001 .
[78] R. A. Singh,et al. Electrical conductivity, thermoelectric power and dielectric constant of polycrystalline CrTiO3 , 1995 .
[79] Zhenjun Wang,et al. Giant negative magnetoresistance of spin polarons in magnetic semiconductors–chromium-doped Ti2O3 thin films , 2005 .
[80] O. Flörke,et al. Andersson Phasen, dichteste Packung und Wadsley Defekte im System TiCrO , 1970 .
[81] David J. Smith,et al. Small-defect clusters in chromia-doped rutiles , 1985 .
[82] H. Seguin,et al. Extension of the optical absorption range of TiO2 thin films by chromium and cadmium doping , 1986 .
[83] David E. Williams,et al. Selectivity and composition dependence of response of gas-sensitive resistors. Part 2.—Hydrogen sulfide response of Cr2 –xTixO3 +y , 1995 .
[84] D. K. Philp,et al. Phase analysis studies of titanium-chromium oxides derived from rutile by crystallographic shear , 1974 .
[85] Hans Dieter Breuer,et al. The influence of transition metal doping on the physical and photocatalytic properties of titania , 1999 .
[86] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[87] H. Yamashita,et al. Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. , 1999, Journal of synchrotron radiation.
[88] J. S. Anderson,et al. The system TiO2Cr2O3: Electron microscopy of solid solutions and crystallographic shear structures , 1972 .
[89] David E. Williams,et al. Gas sensing properties of thin film (≤3 μm) Cr2−xTixO3 (CTO) prepared by atmospheric pressure chemical vapour deposition (APCVD), compared with that prepared by thick film screen-printing , 2005 .
[90] A. Atkinson,et al. Sol-Gel Synthesis of Sub-Micron Titanium-Doped Chromia Powders for Gas Sensing , 2003 .
[91] G. L. Sharma,et al. Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor , 1997 .
[92] S. Komornicki,et al. Influence of Cr on photoelectrochemical properties of TiO2 thin films , 2004 .
[93] T. Yoko,et al. Cr3 + – TiO2 Thin-Film Electrodes Effects of the Homogeneous and Sectional Doping , 2006 .