Influence of annealing on atomic layer deposited Cr2O3-TiO2 thin films

Thin films in the Cr-Ti-O system were atomic layer deposited from CrO2Cl2, TiCl4, and CH3OH on Si(1 0 0), fused SiO2, and a-Al2O3(0 1 2) substrates at 420 oC. The proportion between Ti and Cr resulted from the ratio of the CrO2Cl2/CH3OH and TiCl4/CH3OH pulsing. The films were grown up to the thickness of about 70 nm. Annealing of the films was performed in O2 at 1000 oC. A notable dependence of their microstructure, conductance, and conductometric response to CO, H2, and CH4 in dry air on the substrates, Ti content, and annealing has been demonstrated. The films were polycrystalline on Si and SiO2, and epitaxial on a-Al2O3. At temperatures above 400 oC, the films had a conductance, advantageous from the point of view of semiconductor gas sensors. In response to a 30-ppm CO exposure at 450 oC, an annealed film on the a-Al2O3(0 1 2) substrate, distinguished by a relatively high Ti/Cr atomic ratio, showed a 16-% conductance decrease in 20 s, with a 120-s recovery.

[1]  Room temperature ferromagnetism in anatase Ti0.95Cr0.05O2 thin films: Clusters or not? , 2004 .

[2]  M. Rȩkas,et al.  Defect chemistry and semiconducting properties of titanium dioxide: I. Intrinsic electronic equilibrium , 2003 .

[3]  J. Wöllenstein,et al.  Preparation, morphology, and gas-sensing behavior of Cr/sub 2-x/Ti/sub x/O/sub 3+z/ thin films on standard silicon wafers , 2002 .

[4]  S. McBride,et al.  Analytical transmission electron microscopy and surface spectroscopy of ceramics: The microstructural evolution in titanium-doped chromia polycrystals as a function of sintering conditions , 2004 .

[5]  E. Iguchi,et al.  Electrical properties of chromia-doped rutile (TiO3) , 1979 .

[6]  W. D. Callister,et al.  Sintering Chromium Oxide with the Aid of TiO2 , 1979 .

[7]  H. Gerritsen,et al.  Fine Structure, Hyperfine Structure, and Relaxation Times of Cr 3 + in Ti O 2 (Rutile) , 1959 .

[8]  Katarzyna Zakrzewska,et al.  Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films , 1997 .

[9]  M. Graetzel,et al.  Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles , 1982 .

[10]  N. H. Hong Ferromagnetism in transition-metal-doped semiconducting oxide thin films , 2006 .

[11]  M. Girtan,et al.  Chromium-doped titanium oxide thin films , 2005 .

[12]  A. Holt,et al.  Electrical conductivity of Cr2O3 doped with TiO2 , 1999 .

[13]  H. Nagai,et al.  Effect of TiO2 on the Sintering and the Electrical Conductivity of Cr2O3 , 1989 .

[14]  S. Karvinen,et al.  The Effects of Trace Element Doping on the Optical Properties and Photocatalytic Activity of Nanostructured Titanium Dioxide , 2003 .

[15]  J. Nowotny,et al.  Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams☆ , 2003 .

[16]  Ioan Burda,et al.  X-ray absorption study of Cr2O3-TiO2 system , 1995, Other Conferences.

[17]  G. Gao,et al.  Half-metallic ferromagnetism of Cr-doped rutile TiO2: A first-principles pseudopotential study , 2006 .

[18]  F. Perdu,et al.  Point defects and charge transport in pure and chromium-doped rutile at 1273 K , 1989 .

[19]  Wojtek Wlodarski,et al.  Gas Sensing Properties of P-type Semiconducting Cr-doped TiO2 Thin Films , 2002 .

[20]  A. Cornet,et al.  Preparation of Cr-Doped TiO2 Thin Film of P-type Conduction for Gas Sensor Application , 2002 .

[21]  D. K. Philp,et al.  New crystallographic shear families derived from the rutile structure, and the possibility of continuous ordered solid solution , 1971 .

[22]  Jing Du,et al.  Electrostatic spray assisted vapour deposition of TiO2-based films , 2004 .

[23]  Marta Radecka,et al.  Electrical properties of Cr- and Nb-doped TiO2 thin films , 1993 .

[24]  M. C. Bhatnagar,et al.  Improvement of the oxygen gas sensitivity in doped TiO2 thick films , 1999 .

[25]  A. Kellock,et al.  Ferromagnetism and structure of epitaxial Cr-doped anatase TiO 2 thin films , 2006 .

[26]  T. Uustare,et al.  Atomic scale optical monitoring of the initial growth of TiO2 thin films , 2001 .

[27]  J. Sakai,et al.  Ferromagnetism in transition-metal-doped Ti O 2 thin films , 2004 .

[28]  Kengo Shimanoe,et al.  Cr-doped TiO 2 gas sensor for exhaust NO 2 monitoring , 2003 .

[29]  M. Graetzel,et al.  Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles , 1982 .

[30]  K. I. Gnanasekar,et al.  Preparation and characterisation of Cr2−xTixO3+δ and its sensor properties , 1999 .

[31]  Ivan P. Parkin,et al.  A simple equivalent circuit model to represent microstructure effects on the response of semiconducting oxide-based gas sensors , 2003 .

[32]  A. Naoumidis,et al.  Phase studies in the chromium-manganese-titanium oxide system at different oxygen partial pressures , 1991 .

[33]  A. Ghosh,et al.  Transition-metal dopants for extending the response of titanate photoelectrolysis anodes , 1979 .

[34]  Ivan P. Parkin,et al.  Atmospheric pressure chemical vapour deposition of Cr2−xTixO3(CTO) thin films (≤3 µm) on to gas sensing substrates , 2003 .

[35]  Y. Mok,et al.  Nonthermal Plasma-Enhanced Catalytic Removal of Nitrogen Oxides over V2O5/TiO2 and Cr2O3/TiO2 , 2003 .

[36]  A. Kellock,et al.  Negligible magnetism in excellent structural quality Cr(x)Ti(1-x)O(2) anatase: contrast with high-T(C) ferromagnetism in structurally defective Cr(x)Ti(1-x)O(2). , 2005, Physical review letters.

[37]  M. Malati,et al.  Doped TiO2 for solar energy applications , 1986 .

[38]  J. Suehle,et al.  Microhotplate Platforms for Chemical Sensor Research , 2001 .

[39]  T. Uustare,et al.  Nanocrystalline Cr2O3–TiO2 thin films by pulsed laser deposition , 2005 .

[40]  T. Uustare,et al.  Chloride atomic-layer chemical vapor deposition of TiO2 with a chloride pretreatment of substrates , 2001 .

[41]  F. Tietz,et al.  Electrical Conductivity of Sintered Chromia Mixed with TiO2, CuO and Mn-Oxides , 2009 .

[42]  S. Hirano,et al.  Phase relations of the Cr2O3TiO2 system , 1978 .

[43]  Jingying Shi,et al.  Electrochemically assisted photocatalytic oxidation of nitrite over Cr-doped TiO2 under visible light , 2006 .

[44]  J. Fergus Doping and defect association in oxides for use in oxygen sensors , 2003 .

[45]  G. L. Sharma,et al.  Influence of doping on sensitivity and response time of TiO2 oxygen gas sensor , 2000 .

[46]  S. Hirano,et al.  The compound Cr2TiO5 in the system Cr2O3TiO2 , 1979 .

[47]  R. S. Biasi,et al.  Measurement of small concentrations of chromium and iron in rutile (TiO2) using electron spin resonance , 1993 .

[48]  Zhenjun Wang,et al.  Ferromagnetism in chromium-doped reduced-rutile titanium dioxide thin films , 2004 .

[49]  Ivan P. Parkin,et al.  Metal oxide semiconductor gas sensors utilizing a Cr-zeolite catalytic layer for improved selectivity , 2005 .

[50]  T. I. Barry,et al.  Mixed oxides prepared with an induction plasma torch , 1968 .

[51]  Chong-Min Wang,et al.  Growth of Cr-doped TiO2 films in the rutile and anatase structures by oxygen plasma assisted molecular beam epitaxy , 2005 .

[52]  C. Richard A. Catlow,et al.  Experimental and computational study of the gas-sensor behaviour and surface chemistry of the solid-solution Cr2−xTixO3(x≤ 0.5) , 2002 .

[53]  R.M.C. de Almeida,et al.  Reaction–diffusion in high-k dielectrics on Si , 2003 .

[54]  Ivan P. Parkin,et al.  A microstructural model of semiconducting gas sensor response: The effects of sintering temperature on the response of chromium titanate (CTO) to carbon monoxide , 2006 .

[55]  A. Lambrecht,et al.  The influence of light on the gas sensitive properties of microstructured metal oxide thin films , 2005, SPIE Microtechnologies.

[56]  G. Arends I und J , 1958 .

[57]  M. Hayashi,et al.  Spectroscopic Study of the Chemical State and Coloration of Chromium in Rutile , 1990 .

[58]  V. Mikli,et al.  AXES1.9: new tools for estimation of crystallite size and shape by Williamson–Hall analysis , 1999 .

[59]  F. Lévy,et al.  Intrinsic low energy bombardment of titanium chromium oxide thin films prepared by reactive sputtering , 2000 .

[60]  F. Perdu,et al.  ELECTRONIC CONDUCTION IN PURE AND CHROMIUM-DOPED RUTILE AT 1273 K , 1986 .

[61]  K. Asai,et al.  UV-ray photoelectron and ab initio band calculation studies on electronic structures of Cr- or Nb-ion implanted titanium dioxide , 2003 .

[62]  V. Rives,et al.  Structural and surface characterization of the polycrystalline system CrxOy · TiO2 employed for photoreduction of dinitrogen and photodegradation of phenol , 1992 .

[63]  M. Engelhard,et al.  Synthesis of room-temperature ferromagnetic Cr-doped TiO2(110) rutile single crystals using ion implantation , 2006 .

[64]  Jing Du,et al.  Controlled synthesis of gas sensing Cr2−xTixO3 films by electrostatic spray assisted vapour deposition and their structural characterisation , 2006 .

[65]  J. Baumard,et al.  Electrical properties and defect structure of rutile slightly doped with Cr and Ta , 1980 .

[66]  K. I. Gnanasekar,et al.  Soft-chemical preparation and gas sensing properties of iron and manganese substituted Cr1.8Ti0.2O3+δ , 2004 .

[67]  David E. Williams,et al.  Description and characterization of a hydrogen sulfide gas sensor based on Cr2-yTiyO3+x , 1995 .

[68]  Kengo Shimanoe,et al.  Cr-doped TiO2 gas sensor for exhaust NO2 monitoring , 2003 .

[69]  V. Shutthanandan,et al.  Cr-doped TiO2 anatase: A ferromagnetic insulator , 2005 .

[70]  M. O'Keeffe,et al.  Interdiffusion and the solubility limits of Cr2O3 in the rutile phase of TiO2 , 1972 .

[71]  M. Yoshimura,et al.  Microstructural study for a homologous series of Cr2Tin−2O2n−1 with (12̄1)r crystallographic shear structure , 1980 .

[72]  L. Bursill,et al.  Temperature dependence of the solubility limit of chromia (Cr2O3) in titania (TiO2) , 1984 .

[73]  D. K. Philp,et al.  Continuous structure variation and rotating reciprocal lattices in the titanium–chromium oxides , 1974 .

[74]  P. T. Moseley,et al.  A selective ammonia sensor , 1990 .

[75]  Zhenjun Wang,et al.  Transport properties in chromium-doped Ti2O3 thin films , 2005 .

[76]  J. Sakai,et al.  Magnetic structure of V:TiO2 and Cr:TiO2 thin films from magnetic force microscopy measurements , 2005 .

[77]  David E. Williams,et al.  Microspheres of the gas sensor material Cr2 − xTixO3 prepared by the sol–emulsion–gel route , 2001 .

[78]  R. A. Singh,et al.  Electrical conductivity, thermoelectric power and dielectric constant of polycrystalline CrTiO3 , 1995 .

[79]  Zhenjun Wang,et al.  Giant negative magnetoresistance of spin polarons in magnetic semiconductors–chromium-doped Ti2O3 thin films , 2005 .

[80]  O. Flörke,et al.  Andersson Phasen, dichteste Packung und Wadsley Defekte im System TiCrO , 1970 .

[81]  David J. Smith,et al.  Small-defect clusters in chromia-doped rutiles , 1985 .

[82]  H. Seguin,et al.  Extension of the optical absorption range of TiO2 thin films by chromium and cadmium doping , 1986 .

[83]  David E. Williams,et al.  Selectivity and composition dependence of response of gas-sensitive resistors. Part 2.—Hydrogen sulfide response of Cr2 –xTixO3 +y , 1995 .

[84]  D. K. Philp,et al.  Phase analysis studies of titanium-chromium oxides derived from rutile by crystallographic shear , 1974 .

[85]  Hans Dieter Breuer,et al.  The influence of transition metal doping on the physical and photocatalytic properties of titania , 1999 .

[86]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[87]  H. Yamashita,et al.  Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. , 1999, Journal of synchrotron radiation.

[88]  J. S. Anderson,et al.  The system TiO2Cr2O3: Electron microscopy of solid solutions and crystallographic shear structures , 1972 .

[89]  David E. Williams,et al.  Gas sensing properties of thin film (≤3 μm) Cr2−xTixO3 (CTO) prepared by atmospheric pressure chemical vapour deposition (APCVD), compared with that prepared by thick film screen-printing , 2005 .

[90]  A. Atkinson,et al.  Sol-Gel Synthesis of Sub-Micron Titanium-Doped Chromia Powders for Gas Sensing , 2003 .

[91]  G. L. Sharma,et al.  Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor , 1997 .

[92]  S. Komornicki,et al.  Influence of Cr on photoelectrochemical properties of TiO2 thin films , 2004 .

[93]  T. Yoko,et al.  Cr3 + – TiO2 Thin-Film Electrodes Effects of the Homogeneous and Sectional Doping , 2006 .