A versatile ES cell-based melanoma mouse modeling platform

The cumbersome and time-consuming process of generating new mouse strains and multi-allelic experimental animals often hinders the use of genetically engineered mouse models (GEMM) in cancer research. Here, we describe the development and validation of an embryonic stem cell (ESC)-GEMM platform for rapid modeling of melanoma in mice. Our platform incorporates twelve clinically relevant genotypes composed of combinations of four driver alleles (LSL-BrafV600E, LSL-NrasQ61R, PtenFlox, Cdkn2aFlox) and regulatory alleles to spatiotemporally control the perturbation of genes-of-interest. Our ESCs produce high contribution chimeras, which recapitulate the melanoma phenotypes of conventionally bred mice. Using our ESC-GEMM platform to modulate Pten expression in melanocytes in vivo, we highlight the utility and advantages of gene depletion by CRISPR-Cas9, RNAi, or conditional knockout for melanoma modeling. Moreover, we use complementary genetic methods to demonstrate the impact of Pten restoration on the prevention and maintenance of Pten-deficient melanomas. Finally, we show that chimera-derived melanoma cell lines retain regulatory allele competency and are a powerful resource to complement ESC-GEMM chimera experiments in vitro and in syngeneic grafts in vivo. Thus, when combined with sophisticated genetic tools, our ESC-GEMM platform enables rapid, high-throughput, and versatile studies aimed at addressing outstanding questions in melanoma biology.

[1]  Andrej J. Savol,et al.  Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells , 2017, Nature.

[2]  John G. Doench,et al.  In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target , 2017, Nature.

[3]  Teng Han,et al.  R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine , 2017, Nature Communications.

[4]  K. Blenman,et al.  UV‐induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model , 2017, Pigment cell & melanoma research.

[5]  G. Merlino,et al.  Genetically engineered mouse models of melanoma , 2017, Cancer.

[6]  Catherine A. Shang,et al.  Whole-genome landscapes of major melanoma subtypes , 2017, Nature.

[7]  M. Bosenberg,et al.  The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations , 2016, Pigment cell & melanoma research.

[8]  S. Ariyan,et al.  Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas , 2015, Nature Genetics.

[9]  I. Huijbers,et al.  Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer , 2015, Proceedings of the National Academy of Sciences.

[10]  Hans Clevers,et al.  Apc Restoration Promotes Cellular Differentiation and Reestablishes Crypt Homeostasis in Colorectal Cancer , 2015, Cell.

[11]  Hans Clevers,et al.  Efficient Intracellular Delivery of Native Proteins , 2015, Cell.

[12]  Michael B. Mann,et al.  Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma , 2015, Nature Genetics.

[13]  Lukas E Dow,et al.  Inducible in vivo genome editing with CRISPR/Cas9 , 2015, Nature Biotechnology.

[14]  A. Rust,et al.  BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model , 2015, Proceedings of the National Academy of Sciences.

[15]  N. Bardeesy,et al.  mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation. , 2015, Cancer cell.

[16]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[17]  David B. Darr,et al.  Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. , 2014, Cancer discovery.

[18]  Hao Yin,et al.  CRISPR-mediated direct mutation of cancer genes in the mouse liver , 2014, Nature.

[19]  J. Fisher,et al.  Multiple murine BRafV600E melanoma cell lines with sensitivity to PLX4032 , 2014, Pigment cell & melanoma research.

[20]  S. Lowe,et al.  Conditional Reverse Tet-Transactivator Mouse Strains for the Efficient Induction of TRE-Regulated Transgenes in Mice , 2014, PloS one.

[21]  N. Dhomen,et al.  Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53 , 2014, Nature.

[22]  I. Huijbers,et al.  Rapid target gene validation in complex cancer mouse models using re-derived embryonic stem cells , 2014, EMBO molecular medicine.

[23]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[24]  S. Lowe,et al.  A modular and flexible ESC-based mouse model of pancreatic cancer , 2014, Genes & development.

[25]  Christof Fellmann,et al.  An optimized microRNA backbone for effective single-copy RNAi. , 2013, Cell reports.

[26]  M. McMahon,et al.  Differential AKT dependency displayed by mouse models of BRAFV600E-initiated melanoma. , 2013, The Journal of clinical investigation.

[27]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[28]  Matthew J. Davis,et al.  Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma , 2012, Nature Genetics.

[29]  S. Lowe,et al.  Life in the Fast Lane: Mammalian Disease Models in the Genomics Era , 2012, Cell.

[30]  T. Fennell,et al.  Melanoma genome sequencing reveals frequent PREX2 mutations , 2012, Nature.

[31]  Christof Fellmann,et al.  A pipeline for the generation of shRNA transgenic mice , 2012, Nature Protocols.

[32]  D. Rimm,et al.  β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. , 2011, Cancer cell.

[33]  P. Pandolfi,et al.  In Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma , 2011, Cell.

[34]  Johannes Zuber,et al.  A Rapid and Scalable System for Studying Gene Function in Mice Using Conditional RNA Interference , 2011, Cell.

[35]  S. Elledge,et al.  Functional identification of optimized RNAi triggers using a massively parallel sensor assay. , 2011, Molecular cell.

[36]  Christof Fellmann,et al.  Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi , 2011, Nature Biotechnology.

[37]  L. Chin,et al.  Non-germline genetically engineered mouse models for translational cancer research , 2010, Nature Reviews Cancer.

[38]  L. Chin,et al.  Chimeric mouse tumor models reveal differences in pathway activation between ERBB family– and KRAS-dependent lung adenocarcinomas , 2010, Nature Biotechnology.

[39]  Bao-cun Sun,et al.  Doxycycline inhibits the adhesion and migration of melanoma cells by inhibiting the expression and phosphorylation of focal adhesion kinase (FAK). , 2009, Cancer letters.

[40]  J. Reis-Filho,et al.  Oncogenic Braf induces melanocyte senescence and melanoma in mice. , 2009, Cancer cell.

[41]  R. DePinho,et al.  BRafV600E cooperates with Pten silencing to elicit metastatic melanoma , 2009, Nature Genetics.

[42]  B. Doble,et al.  The ground state of embryonic stem cell self-renewal , 2008, Nature.

[43]  David A. Tuveson,et al.  Maximizing mouse cancer models , 2007, Nature Reviews Cancer.

[44]  M. Serrano,et al.  A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. , 2007, Genes & development.

[45]  D. Pinkel,et al.  Somatic activation of KIT in distinct subtypes of melanoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[46]  L. Chin,et al.  Characterization of melanocyte‐specific inducible Cre recombinase transgenic mice , 2006, Genesis.

[47]  Rudolf Jaenisch,et al.  Efficient method to generate single‐copy transgenic mice by site‐specific integration in embryonic stem cells , 2006, Genesis.

[48]  C. Pritchard,et al.  Expression of endogenous oncogenic V600EB-raf induces proliferation and developmental defects in mice and transformation of primary fibroblasts. , 2005, Cancer research.

[49]  J. Fridlyand,et al.  Distinct sets of genetic alterations in melanoma. , 2005, The New England journal of medicine.

[50]  M. Groszer,et al.  Cre/loxP‐mediated inactivation of the murine Pten tumor suppressor gene , 2002, Genesis.

[51]  A. Berns,et al.  Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice , 2001, Nature.