Appearance features in Encoding Color Space for visual surveillance

Abstract Person re-identification and visual tracking are two important tasks in video surveillance. Many works have been done on appearance modeling for these two tasks. However, existing feature descriptors are mainly constructed on three-channel color spaces, such like RGB, HSV and XYZ. These color spaces somehow enable meaningful representation for color, yet may lack distinctiveness for real-world tasks. In this paper, we propose a multi-channel Encoding Color Space (ECS), and consider the color distinction with the design of image feature descriptor. In order to overcome the illumination variation and shape deformation, we design features on the basis of the Encoding Color Space and Histogram of Oriented Gradient (HOG), which enables rich color-gradient characteristics. Additionally, we extract Second Order Histogram (SOH) on the descriptor constructed to capture abstract information with layout constrains. Exhaustive experiments are performed on datasets VIPeR, CAVIAR, CUHK01 and Visual Tracking Benchmark. Experimental results on these datasets show that our feature descriptors could achieve promising performance.

[1]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Hanqing Lu,et al.  MC-HOG Correlation Tracking with Saliency Proposal , 2016, AAAI.

[3]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Lu Zhang,et al.  Preserving Structure in Model-Free Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Ming Shao,et al.  Cross-View Projective Dictionary Learning for Person Re-Identification , 2015, IJCAI.

[6]  Huchuan Lu,et al.  Visual tracking via shallow and deep collaborative model , 2016, Neurocomputing.

[7]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[8]  Horst Bischof,et al.  Large scale metric learning from equivalence constraints , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[10]  Rui Shi,et al.  Visual tracking utilizing robust complementary learner and adaptive refiner , 2017, Neurocomputing.

[11]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[12]  Zheng Liu,et al.  Enhancing person re-identification by integrating gait biometric , 2014, Neurocomputing.

[13]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Weibin Liu,et al.  Two-level superpixel and feedback based visual object tracking , 2017, Neurocomputing.

[16]  Xiaojing Chen,et al.  Multi-graph feature level fusion for person re-identification , 2017, Neurocomputing.

[17]  Xiaogang Wang,et al.  Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Michael Jones,et al.  An improved deep learning architecture for person re-identification , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[21]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[22]  Ling Shao,et al.  Visual Tracking Using Strong Classifier and Structural Local Sparse Descriptors , 2015, IEEE Transactions on Multimedia.

[23]  Vittorio Murino,et al.  Custom Pictorial Structures for Re-identification , 2011, BMVC.

[24]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[25]  Jiwen Lu,et al.  Multi-modal uniform deep learning for RGB-D person re-identification , 2017, Pattern Recognit..

[26]  Shengcai Liao,et al.  Perceptual hash-based feature description for person re-identification , 2018, Neurocomputing.

[27]  Fei Xiong,et al.  Person Re-Identification Using Kernel-Based Metric Learning Methods , 2014, ECCV.

[28]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[29]  Fahad Shahbaz Khan,et al.  Color attributes for object detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Sabine Süsstrunk,et al.  Semantic-Improved Color Imaging Applications: It Is All About Context , 2015, IEEE Transactions on Multimedia.

[32]  Ping Feng,et al.  Sparse representation combined with context information for visual tracking , 2017, Neurocomputing.

[33]  Xiaogang Wang,et al.  Human Reidentification with Transferred Metric Learning , 2012, ACCV.

[34]  Xiaogang Wang,et al.  Learning Mid-level Filters for Person Re-identification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[36]  Jian-Huang Lai,et al.  Deep Ranking for Person Re-Identification via Joint Representation Learning , 2015, IEEE Transactions on Image Processing.

[37]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Alessandro Perina,et al.  Person re-identification by symmetry-driven accumulation of local features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Michael J. Morgan,et al.  Features and the ‘primal sketch’ , 2011, Vision Research.

[40]  Joost van de Weijer,et al.  Color in Computer Vision: Fundamentals and Applications , 2012 .

[41]  Shaogang Gong,et al.  Person Re-Identification , 2014 .

[42]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[43]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[44]  Frédéric Jurie,et al.  PCCA: A new approach for distance learning from sparse pairwise constraints , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Rynson W. H. Lau,et al.  Visual Tracking via Locality Sensitive Histograms , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  B. S. Manjunath,et al.  Context-Aware Hypergraph Modeling for Re-identification and Summarization , 2016, IEEE Transactions on Multimedia.

[49]  Chunxiao Liu,et al.  Person Re-identification: What Features Are Important? , 2012, ECCV Workshops.

[50]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[51]  Zheng Wang,et al.  Zero-Shot Person Re-identification via Cross-View Consistency , 2016, IEEE Transactions on Multimedia.

[52]  Xiaogang Wang,et al.  Locally Aligned Feature Transforms across Views , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Hai Tao,et al.  Evaluating Appearance Models for Recognition, Reacquisition, and Tracking , 2007 .

[54]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[55]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[56]  Michael Felsberg,et al.  Coloring Action Recognition in Still Images , 2013, International Journal of Computer Vision.

[57]  Jiwen Lu,et al.  Multiple Feature Fusion via Weighted Entropy for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[58]  Anton van den Hengel,et al.  Learning to rank in person re-identification with metric ensembles , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[60]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[61]  Tao Xiang,et al.  Transferring a semantic representation for person re-identification and search , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  GeversTheo,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010 .

[63]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[64]  Shengcai Liao,et al.  Person re-identification by Local Maximal Occurrence representation and metric learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Shaogang Gong,et al.  Person Re-Identification by Support Vector Ranking , 2010, BMVC.

[66]  Li Bai,et al.  Minimum error bounded efficient ℓ1 tracker with occlusion detection , 2011, CVPR 2011.

[67]  Chunxiao Liu,et al.  Person re-identification by manifold ranking , 2013, 2013 IEEE International Conference on Image Processing.

[68]  N. Ahuja,et al.  Robust Visual Tracking via MultiTask Sparse Learning , 2012 .

[69]  Xiaogang Wang,et al.  Person Re-identification by Salience Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[70]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[71]  Hanqing Lu,et al.  Collaborative Correlation Tracking , 2015, BMVC.

[72]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[73]  Zhihua Wei,et al.  Fusion of multiple channel features for person re-identification , 2016, Neurocomputing.

[74]  Shengcai Liao,et al.  Salient Color Names for Person Re-identification , 2014, ECCV.

[75]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[76]  Horst Bischof,et al.  PROST: Parallel robust online simple tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[77]  Qi Tian,et al.  Scalable Person Re-identification: A Benchmark , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).