How lipids influence the mode of action of membrane-active peptides.

[1]  G. Pabst,et al.  On the propensity of phosphatidylglycerols to form interdigitated phases. , 2007, Biophysical journal.

[2]  Huey W. Huang Molecular mechanism of antimicrobial peptides: the origin of cooperativity. , 2006, Biochimica et biophysica acta.

[3]  Ayyalusamy Ramamoorthy,et al.  LL-37, the only human member of the cathelicidin family of antimicrobial peptides. , 2006, Biochimica et biophysica acta.

[4]  Guangshun Wang,et al.  Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. , 2006, Journal of the American Chemical Society.

[5]  Y. Ishitsuka,et al.  Lipid headgroup discrimination by antimicrobial peptide LL-37: insight into mechanism of action. , 2006, Biophysical journal.

[6]  S. Blondelle,et al.  Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. , 2005, Combinatorial chemistry & high throughput screening.

[7]  Michael F. Brown,et al.  Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. , 2004, Biochemistry.

[8]  D. Craik,et al.  The cyclic antimicrobial peptide RTD‐1 induces stabilized lipid–peptide domains more efficiently than its open‐chain analogue , 2004, FEBS letters.

[9]  G. Pabst,et al.  Structural analysis of weakly ordered membrane stacks , 2003 .

[10]  Dong-Kuk Lee,et al.  Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. , 2003, Biochemistry.

[11]  L. Tamm,et al.  Structural transitions in short-chain lipid assemblies studied by (31)P-NMR spectroscopy. , 2002, Biophysical journal.

[12]  M. Dathe,et al.  General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. , 2002, Biochimica et biophysica acta.

[13]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[14]  G. Pabst,et al.  Refined structure of 1,2-diacyl-P-O-ethylphosphatidylcholine bilayer membranes. , 2001, Chemistry and physics of lipids.

[15]  S. Krueger,et al.  SANS Study of the Structural Phases of Magnetically Alignable Lanthanide-Doped Phospholipid Mixtures , 2001 .

[16]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[17]  S. Kaneshina,et al.  Effect of local anesthetics on the bilayer membrane of dipalmitoylphosphatidylcholine: interdigitation of lipid bilayer and vesicle-micelle transition. , 2000, Biophysical chemistry.

[18]  Huey W. Huang,et al.  Action of antimicrobial peptides: two-state model. , 2000, Biochemistry.

[19]  H. Amenitsch,et al.  Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[21]  M. Kriechbaum,et al.  Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studi , 1999, Biochemistry.

[22]  T. Ganz Defensins and Host Defense , 1999, Science.

[23]  Y. Shai,et al.  Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. , 1999, The Biochemical journal.

[24]  S. White,et al.  An amphipathic alpha-helix at a membrane interface: a structural study using a novel X-ray diffraction method. , 1999, Journal of molecular biology.

[25]  E. Goormaghtigh,et al.  The Low Density Lipoprotein Receptor Active Conformation of Apolipoprotein E , 1998, The Journal of Biological Chemistry.

[26]  K. Berndt,et al.  Conformation-dependent Antibacterial Activity of the Naturally Occurring Human Peptide LL-37* , 1998, The Journal of Biological Chemistry.

[27]  N. Fujii,et al.  An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. , 1996, Biochemistry.

[28]  R. Suter,et al.  Anomalous phase behavior of long chain saturated lecithin bilayers. , 1996, Biochimica et biophysica acta.

[29]  J. Dufourcq,et al.  Acyl chain length dependence in the stability of melittin-phosphatidylcholine complexes. A light scattering and 31P-NMR study. , 1995, Biochimica et biophysica acta.

[30]  R. Suter,et al.  Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. , 1993, Biophysical journal.

[31]  H. G. Boman,et al.  Antibacterial peptides: Key components needed in immunity , 1991, Cell.

[32]  R. B. Merrifield,et al.  All-D amino acid-containing channel-forming antibiotic peptides. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Dempsey The actions of melittin on membranes. , 1990, Biochimica et biophysica acta.

[34]  R. Suter,et al.  Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. , 1989, Biophysical journal.

[35]  T. McIntosh,et al.  Tris buffer causes acyl chain interdigitation in phosphatidylglycerol. , 1987, Biochimica et biophysica acta.

[36]  A. Watts,et al.  A deuterium and phosphorus-31 nuclear magnetic resonance study of the interaction of melittin with dimyristoylphosphatidylcholine bilayers and the effects of contaminating phospholipase A2. , 1987, Biochemistry.

[37]  P. Laggner,et al.  Structure and thermodynamics of the dihexadecylphosphatidylcholine-water system. , 1987, Chemistry and physics of lipids.

[38]  T. McIntosh,et al.  Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. , 1986, Biochemistry.

[39]  G. Fourche,et al.  Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. , 1986, Biochimica et biophysica acta.

[40]  J. Boggs,et al.  Phase transitions and fatty acid spin label behavior in interdigitated lipid phases induced by glycerol and polymyxin. , 1985, Biochimica et biophysica acta.

[41]  T. McIntosh,et al.  Induction of an interdigitated gel phase in fully hydrated phosphatidylcholine bilayers , 1983 .

[42]  J. Tocanne,et al.  Polymyxin B induces interdigitation in dipalmitoylphosphatidylglycerol lamellar phase with stiff hydrocarbon chains , 1982, FEBS letters.

[43]  J. Tocanne,et al.  Choline and acetylcholine induce interdigitation of hydrocarbon chains in dipalmitoylphosphatidylglycerol lamellar phase with stiff chains , 1982, FEBS letters.

[44]  J. Nagle,et al.  Lecithin bilayers. Density measurement and molecular interactions. , 1978, Biophysical journal.

[45]  V. Luzzati,et al.  Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. , 1973, Journal of molecular biology.

[46]  E. Gong,et al.  Electron microscopic study on reassembly of plasma high density apoprotein with various lipids. , 1971, Biochimica et biophysica acta.

[47]  B. Warren,et al.  X-Ray Diffraction , 2014 .

[48]  G. Pabst GLOBAL PROPERTIES OF BIOMIMETIC MEMBRANES: PERSPECTIVES ON MOLECULAR FEATURES , 2006 .

[49]  Y. Shai,et al.  Mode of action of membrane active antimicrobial peptides. , 2002, Biopolymers.

[50]  K. Lohner Development of novel antimicrobial agents: emerging strategies. , 2001 .

[51]  D. Atkinson,et al.  Recombinant lipoproteins: implications for structure and assembly of native lipoproteins. , 1986, Annual review of biophysics and biophysical chemistry.

[52]  E. Rowe,et al.  Comparative effects of short chain alcohols on lipid phase transitions. , 1985, Alcohol.