Incremental modifications of segmented image defined by discrete maps

Abstract The data structure used to encode an image partition is of critical importance for most of region-based segmentation algorithms. Usual data structures are often convenient to extract only few parameters from the partition while inducing complex processing to compute others. Moreover, the split and merge operations allowed by such data structure are often restricted. A new model ( Braquelaire and Brun, 1998 ) based on discrete maps allows segmentation algorithms to perform unrestricted split and merge operations and extract a wide range of parameters from a partition. In this paper we describe the two basic primitives used by segmentation algorithms to modify a partition: the segment insertion and segment suppression.

[1]  Gaston H. Gonnet,et al.  Analytic variations on quadtrees , 2005, Algorithmica.

[2]  Luc Brun,et al.  Image Segmentation with Topological Maps and Inter-pixel Representation , 1998, J. Vis. Commun. Image Represent..

[3]  Pascal Lienhardt,et al.  Subdivisions of n-dimensional spaces and n-dimensional generalized maps , 1989, SCG '89.

[4]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[5]  G. Damiand,et al.  Topological Map: Minimal Encoding of 3d Segmented Images , 2001 .

[6]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[7]  Pascal Lienhardt Extension of the Notion of Map and Subdivisions of a Three-Dimensional Space , 1988, STACS.

[8]  Christophe Fiorio,et al.  Border Map: A Topological Representation for nD Image Analysis , 1999, DGCI.

[9]  C. Berge Graphes et hypergraphes , 1970 .

[10]  Azriel Rosenfeld,et al.  Region representation: boundary codes from quadtrees , 1980, CACM.

[11]  Luc Brun,et al.  Introduction to Combinatorial Pyramids , 2000, Digital and Image Geometry.

[12]  Guillaume Damiand,et al.  Topological Map Based Algorithms for 3D Image Segmentation , 2002, DGCI.

[13]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Driss Aboutajdine,et al.  Hypergraph imaging: an overview , 2002, Pattern Recognit..

[15]  Alain Bretto,et al.  Combinatorics and Image Processing , 1997, CVGIP Graph. Model. Image Process..

[16]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[17]  Ehoud Ahronovitz,et al.  The Star-Topology: a topology for image analysis , 1995 .

[18]  Walter G. Kropatsch,et al.  Equivalent contraction kernels to build dual irregular pyramids , 1996, TFCV.

[19]  Luc Brun,et al.  Irregular Pyramids with Combinatorial Maps , 2000, SSPR/SPR.

[20]  R. Bergevin,et al.  Registering range views of multipart objects , 1995 .

[21]  Steven W. Zucker,et al.  Region growing: Childhood and adolescence* , 1976 .

[22]  Henri Maître,et al.  A robust method for picture segmentation based on a split-and-merge procedure , 1986, Comput. Vis. Graph. Image Process..

[23]  Christophe Fiorio,et al.  Approche interpixel en analyse d'images : une topologie et des algorithmes de segmentation. (Inter pixel approach in image analysis: a topology and segmentation algorithms) , 1995 .

[24]  Yeong-Gil Shin,et al.  Template-based rendering of run-length encoded volumes , 1997, Proceedings The Fifth Pacific Conference on Computer Graphics and Applications.

[25]  P. R. Meyer,et al.  Boundaries in digital planes , 1990 .

[26]  Robert Cori,et al.  Un code pour les graphes planaires et ses applications , 1973 .

[27]  G. Jones,et al.  Theory of Maps on Orientable Surfaces , 1978 .

[28]  Pascal Desbarats,et al.  3D Split and Merge with 3-maps , 2001 .

[29]  Narendra Ahuja,et al.  AUGMENTED MEDIAL AXIS TRANSFORM. , 1984 .

[30]  Pascal Guitton,et al.  2 1/2D scene update by insertion of contour , 1991, Comput. Graph..

[31]  Theodosios Pavlidis,et al.  Picture Segmentation by a Tree Traversal Algorithm , 1976, JACM.

[32]  Jennifer Ryan IIS-Hypergraphs , 1996, SIAM J. Discret. Math..

[33]  Claude L. Fennema,et al.  Scene Analysis Using Regions , 1970, Artif. Intell..

[34]  W. T. Tutte Graph Theory , 1984 .

[35]  Guillaume Damiand,et al.  Removal and Contraction for n-Dimensional Generalized Maps , 2003, DGCI.

[36]  Jean-Philippe Domenger,et al.  Geometrical, topological, and hierarchical structuring of overlapping 2-D discrete objects , 1997, Comput. Graph..

[37]  Philippe Colantoni,et al.  Displaying Image Neighborhood Hypergraphs Line-Graphs , 2002, DGCI.

[38]  D. Singerman,et al.  FOUNDATIONS OF THE THEORY OF MAPS ON SURFACES WITH BOUNDARY , 1985 .

[39]  Jean-Marc Chassery,et al.  3D medial surfaces and 3D skeletons , 1992 .