Discrimination and identification of morphotypes of Banksia integrifolia (Proteaceae) by an Artificial Neural Network (ANN), based on morphological and fractal parameters of leaves and flowers.
暂无分享,去创建一个
Giuseppe Messina | Sergio Mugnai | Stefano Mancuso | Camilla Pandolfi | Kingsley W. Dixon | Elisa Azzarello | K. Dixon | S. Mancuso | E. Masi | E. Azzarello | C. Pandolfi | S. Mugnai | G. Messina | Elisa Masi
[1] Geoffrey E. Hinton,et al. Learning internal representations by error propagation , 1986 .
[2] P. Ladiges,et al. The Banksia integrifolia L.f. species complex (Proteaceae) , 1994 .
[3] A. George. The genus Banksia L.f. (Proteaceae) , 1981, Nuytsia—The journal of the Western Australian Herbarium.
[4] James H. Brown,et al. The fourth dimension of life: fractal geometry and allometric scaling of organisms. , 1999, Science.
[5] E. M. Wright,et al. Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.
[6] J. Żebrowska,et al. The use of RAPD markers for strawberry identification and genetic diversity studies , 2003 .
[7] José Luis González-Andújar,et al. Use of fractals and moments to describe olive cultivars , 2003, The Journal of Agricultural Science.
[8] Jim Fowler,et al. Practical Statistics for Field Biology , 1991 .
[9] Lynne Boddy,et al. Neural Network Analysis of Flow Cytometry Data , 1993 .
[10] M. O'Neill,et al. Automated species identification: why not? , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[11] J Morris,et al. Neural-network contributions in biotechnology. , 1994, Trends in biotechnology.
[12] Jacek M. Zurada,et al. Introduction to artificial neural systems , 1992 .
[13] Camellia japonica L. genotypes identified by an artificial neural network based on phyllometric and fractal parameters , 2007, Plant Systematics and Evolution.
[14] Terrence J. Sejnowski,et al. Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..
[15] Zhuoyong Zhang,et al. A comparative study of multilayer perceptron neural networks for the identification of rhubarb samples. , 2007, Phytochemical analysis : PCA.
[16] Jonathan Y. Clark. Identification of botanical specimens using artificial neural networks , 2004, 2004 Symposium on Computational Intelligence in Bioinformatics and Computational Biology.
[17] S. Mancuso,et al. Comparing fractal analysis, electrical impedance and electrolyte leakage for the assessment of cold tolerance in Callistemon and Grevillea spp. , 2004 .
[18] H. Nybom,et al. Genetic diversity inChaenomeles (Rosaceae) revealed by RAPD analysis , 1999, Plant Systematics and Evolution.
[19] Y. Okumoto,et al. Isozyme electrophoretic characterization of 29 related cultivars of lily (Lilium spp.) , 2005 .
[20] Kevin Warwick,et al. Artificial Keys for Botanical Identification using a Multilayer Perceptron Neural Network (MLP) , 2004, Artificial Intelligence Review.
[21] S. Mancuso,et al. Fractal geometry and neural networks for the identification and characterization of ornamental plants. , 2006 .
[22] Stefano Mancuso,et al. Identifying Olive (Olea europaea ) Cultivars Using Artificial Neural Networks , 1999 .
[23] F. Ferrini,et al. CHESTNUT (CASTANEA SATIVA MILL.) GENOTYPE IDENTIFICATION: AN ARTIFICIAL NEURAL NETWORK APPROACH , 1999 .
[24] D.R. Hush,et al. Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.
[25] Robert R. Sokal,et al. A statistical method for evaluating systematic relationships , 1958 .
[26] S. Mancuso,et al. The fractal spectrum of leaf colour as a tool for measuring frost hardiness in plants , 2003 .
[27] Kevin J. Gaston,et al. Image analysis, neural networks, and the taxonomic impediment to biodiversity studies , 1997, Biodiversity & Conservation.