Generalized low-density (GLD) lattices

We propose the construction of a new family of lattice sphere packings. Given a small-dimensional lattice, we start by building a first lattice in a large dimension by the direct sum of the small lattice. Then, the coordinates of the first large lattice are permuted to yield a second large-dimensional lattice. Finally, our generalized low-density (GLD) lattice is the intersection of the first and the second lattice. We restrict our construction in this paper to integer lattices. GLD lattices are the result of mixing classical lattice theory with modern coding theory. They are potential candidates not only for channel coding as coded modulations, but also for physical-layer network coding and for secure digital communications.

[1]  Philippe Gaborit,et al.  On the construction of dense lattices with A given automorphisms group , 2007 .

[2]  Uri Erez,et al.  A simple proof for the existence of “good” pairs of nested lattices , 2012 .

[3]  Nicola di Pietro,et al.  On infinite and finite lattice constellations for the additive white Gaussian Noise Channel. (Constellations finies et infinies de réseaux de points pour le canal AWGN) , 2014 .

[4]  Yanfei Yan,et al.  Polar Lattices: Where Arikan Meets Forney , 2013, ArXiv.

[5]  Meir Feder,et al.  Low Density Lattice Codes , 2006, ISIT.

[6]  Cong Ling,et al.  Achieving the AWGN channel capacity with lattice Gaussian coding , 2013, 2013 IEEE International Symposium on Information Theory.

[7]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[8]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[9]  Mohammad-Reza Sadeghi,et al.  On the performance of 1-level LDPC lattices , 2013, 2013 Iran Workshop on Communication and Information Theory.

[10]  Daniel Panario,et al.  Turbo Lattices: Construction and Error Decoding Performance , 2012 .

[11]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[12]  Gregory Poltyrev,et al.  On coding without restrictions for the AWGN channel , 1993, IEEE Trans. Inf. Theory.

[13]  Joseph Jean Boutros,et al.  New results on Construction A lattices based on very sparse parity-check matrices , 2013, 2013 IEEE International Symposium on Information Theory.

[14]  Meir Feder,et al.  Finite-Dimensional Infinite Constellations , 2011, IEEE Transactions on Information Theory.

[15]  Loïc Brunel,et al.  Soft-input soft-output lattice sphere decoder for linear channels , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[16]  Uri Erez,et al.  Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.

[17]  Loïc Brunel,et al.  Integer low-density lattices based on construction A , 2012, 2012 IEEE Information Theory Workshop.

[18]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[19]  Yanfei Yan,et al.  Polar lattices: Where Arıkan meets Forney , 2013, 2013 IEEE International Symposium on Information Theory.

[20]  Sae-Young Chung,et al.  Irregular low-density parity-check lattices , 2008, 2008 IEEE International Symposium on Information Theory.

[21]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[22]  J. Boutros,et al.  Generalized low density (Tanner) codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[23]  J. Boutros,et al.  A low complexity FEC scheme based on the intersection of interleaved block codes , 1999, 1999 IEEE 49th Vehicular Technology Conference (Cat. No.99CH36363).

[24]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.