Generalized low-density (GLD) lattices
暂无分享,去创建一个
[1] Philippe Gaborit,et al. On the construction of dense lattices with A given automorphisms group , 2007 .
[2] Uri Erez,et al. A simple proof for the existence of “good” pairs of nested lattices , 2012 .
[3] Nicola di Pietro,et al. On infinite and finite lattice constellations for the additive white Gaussian Noise Channel. (Constellations finies et infinies de réseaux de points pour le canal AWGN) , 2014 .
[4] Yanfei Yan,et al. Polar Lattices: Where Arikan Meets Forney , 2013, ArXiv.
[5] Meir Feder,et al. Low Density Lattice Codes , 2006, ISIT.
[6] Cong Ling,et al. Achieving the AWGN channel capacity with lattice Gaussian coding , 2013, 2013 IEEE International Symposium on Information Theory.
[7] G. David Forney,et al. Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.
[8] Hans-Andrea Loeliger,et al. Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.
[9] Mohammad-Reza Sadeghi,et al. On the performance of 1-level LDPC lattices , 2013, 2013 Iran Workshop on Communication and Information Theory.
[10] Daniel Panario,et al. Turbo Lattices: Construction and Error Decoding Performance , 2012 .
[11] Emanuele Viterbo,et al. A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.
[12] Gregory Poltyrev,et al. On coding without restrictions for the AWGN channel , 1993, IEEE Trans. Inf. Theory.
[13] Joseph Jean Boutros,et al. New results on Construction A lattices based on very sparse parity-check matrices , 2013, 2013 IEEE International Symposium on Information Theory.
[14] Meir Feder,et al. Finite-Dimensional Infinite Constellations , 2011, IEEE Transactions on Information Theory.
[15] Loïc Brunel,et al. Soft-input soft-output lattice sphere decoder for linear channels , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).
[16] Uri Erez,et al. Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.
[17] Loïc Brunel,et al. Integer low-density lattices based on construction A , 2012, 2012 IEEE Information Theory Workshop.
[18] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[19] Yanfei Yan,et al. Polar lattices: Where Arıkan meets Forney , 2013, 2013 IEEE International Symposium on Information Theory.
[20] Sae-Young Chung,et al. Irregular low-density parity-check lattices , 2008, 2008 IEEE International Symposium on Information Theory.
[21] Rüdiger L. Urbanke,et al. Modern Coding Theory , 2008 .
[22] J. Boutros,et al. Generalized low density (Tanner) codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).
[23] J. Boutros,et al. A low complexity FEC scheme based on the intersection of interleaved block codes , 1999, 1999 IEEE 49th Vehicular Technology Conference (Cat. No.99CH36363).
[24] John Cocke,et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.